已知数列、中,,且当时,,.记的阶乘.(1)求数列的通项公式;(2)求证:数列为等差数列;(3)若,求的前项和.-高三数学

题目简介

已知数列、中,,且当时,,.记的阶乘.(1)求数列的通项公式;(2)求证:数列为等差数列;(3)若,求的前项和.-高三数学

题目详情

已知数列中,,且当时,.记的阶乘.
(1)求数列的通项公式;
(2)求证:数列为等差数列;
(3)若,求的前 项和.
题型:解答题难度:中档来源:不详

答案

(1);(2)详见解析;(3)数列的前项和为.

试题分析:(1)根据数列的通项公式的结构特点选择迭代法求数列的通项公式;(2)在数列的递推式的两边同时除以得到,于是得到,从而利用定义证明数列为等差数列;(3)在(2)的基础上求出数列的通项公式,并分别求出数列和数列的通项公式,然后根据数列的通项结构选择分组求和法,分别对数列和数列进行求和,利用裂项法对数列进行求和,利用错位相减法对数列进行求和,然后再将两个和相加即可.
试题解析:(1)

,所以
(2)由,两边同时除以,即
所以数列是以为首项,以为公差的等差数列,
,故
(3)因为

的前项和为
,             ①
    ②
由②①得,
=.

更多内容推荐