己知向量a=(2sinx2,1-2cosx2),b=(cosx2,1+2cosx2),函数f(x)=log12(a•b).(Ⅰ)求函数f(x)的定义域和值域;(Ⅱ)求函数f(x)的单调区间.-数学

题目简介

己知向量a=(2sinx2,1-2cosx2),b=(cosx2,1+2cosx2),函数f(x)=log12(a•b).(Ⅰ)求函数f(x)的定义域和值域;(Ⅱ)求函数f(x)的单调区间.-数学

题目详情

己知向量a=(2sin
x
2
,1-
2
cos
x
2
)
,b=(cos
x
2
,1+
2
cos
x
2
)
,函数f(x)=log
1
2
(a•b).
(Ⅰ)求函数f(x)的定义域和值域;
(Ⅱ)求函数f(x)的单调区间.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵
a
b
=2sinclass="stub"x
2
cosclass="stub"x
2
+(1-
2
cosclass="stub"x
2
)(1+
2
cosclass="stub"x
2
)=sinx+1-2cos2class="stub"x
2

=sinx-cosx=
2
sin(x-class="stub"π
4
)

sin(x-class="stub"π
4
)>0

2kπ<x-class="stub"π
4
<2kπ+π

2kπ+class="stub"π
4
<x<2kπ+class="stub"5π
4
,k∈Z.
∴f(x)的定义域是(2kπ+class="stub"π
4
,2kπ+class="stub"5π
4
),k∈Z

0<
2
sin(x-class="stub"π
4
)≤
2
,则f(x)≥logclass="stub"1
2
2
=-class="stub"1
2

∴f(x)的值域是[-class="stub"1
2
,+∞)

(Ⅱ)由题设f(x)=logclass="stub"1
2
2
sin(x-class="stub"π
4
)

若f(x)为增函数,则y=
2
sin(x-class="stub"π
4
)
为减函数,
2kπ+class="stub"π
2
≤x-class="stub"π
4
<2kπ+π

2kπ+class="stub"3π
4
≤x<2kπ+class="stub"5π
4

∴f(x)的递增区间是[2kπ+class="stub"3π
4
,2kπ+class="stub"5π
4
),k∈Z

若f(x)为减函数,则y=
2
sin(x-class="stub"π
4
)
为增函数,
2kπ<x-class="stub"π
4
≤2kπ+class="stub"π
2
,即2kπ+class="stub"π
4
<x≤2kπ+class="stub"3π
4

∴f(x)的递减区间是(2kπ+class="stub"π
4
,2kπ+class="stub"3π
4
],k∈Z

更多内容推荐