设平面向量a=(cosx,sinx),b=(32,12),函数f(x)=a•b+1.①求函数f(x)的值域;②求函数f(x)的单调增区间.③当f(α)=95,且π6<α<2π3时,求sin(2α+2π

题目简介

设平面向量a=(cosx,sinx),b=(32,12),函数f(x)=a•b+1.①求函数f(x)的值域;②求函数f(x)的单调增区间.③当f(α)=95,且π6<α<2π3时,求sin(2α+2π

题目详情

设平面向量
a
=(cosx,sinx)
b
=(
3
2
1
2
)
,函数f(x)=
a
b
+1

①求函数f(x)的值域;
②求函数f(x)的单调增区间.
③当f(α)=
9
5
,且
π
6
<α<
3
时,求sin(2α+
3
)
的值.
题型:解答题难度:中档来源:不详

答案

依题意f(x)=(cosx,sinx)•(
3
2
,class="stub"1
2
)+1=
3
2
cosx+class="stub"1
2
sinx+1
(2分)
=sin(x+class="stub"π
3
)+1
(5分)
①函数f(x)的值域是[0,2];(6分)
②令-class="stub"π
2
+2kπ≤x+class="stub"π
3
≤class="stub"π
2
+2kπ

解得:-class="stub"5π
6
+2kπ≤x≤class="stub"π
6
+2kπ

所以函数f(x)的单调增区间为[-class="stub"5π
6
+2kπ,class="stub"π
6
+2kπ](k∈Z)
;(8分)
③由f(α)=sin(α+class="stub"π
3
)+1=class="stub"9
5
,得sin(α+class="stub"π
3
)=class="stub"4
5

因为class="stub"π
6
<α<class="stub"2π
3
,所以class="stub"π
2
<α+class="stub"π
3
<π

cos(α+class="stub"π
3
)=-class="stub"3
5
,(11分)
sin(2α+class="stub"2π
3
)=sin2(α+class="stub"π
3
)

=2sin(α+class="stub"π
3
)cos(α+class="stub"π
3
)=-2×class="stub"4
5
×class="stub"3
5
=-class="stub"24
25
(13分).

更多内容推荐