在△ABC中,已知a,b,c是角A,B,C的对应边,①若a>b,则f(x)=(sinA-sinB)•x在R上是增函数;②若a2-b2=(acosB+bcosA)2,则△ABC是Rt△;③cosC+si

题目简介

在△ABC中,已知a,b,c是角A,B,C的对应边,①若a>b,则f(x)=(sinA-sinB)•x在R上是增函数;②若a2-b2=(acosB+bcosA)2,则△ABC是Rt△;③cosC+si

题目详情

在△ABC中,已知a,b,c是角A,B,C的对应边,①若a>b,则f(x)=(sinA-sinB)•x在R上是增函数; ②若a2-b2=(acosB+bcosA)2,则△ABC是Rt△; ③cosC+sinC的最小值为-
2
; ④若cosA=cosB,则A=B;⑤若(1+tanA)(1+tanB)=2,则A+B=
4
,其中正确命题的序号是______.
题型:填空题难度:中档来源:不详

答案

①∵a>b,根据正弦定理得sinA>sinB,
∴f(x)=(sinA-sinB)•x在R上是增函数,故正确;
②∵a2-b2=(acosB+bcosA)2
∴a2-b2=(acosB+bcosA)2=a2cos2B+2abcosBcosA+b2cos2A,
整理得a2sin2B=2abcosBcosA+b2(1+cos2A),
即sin2Asin2B=2sinAsinBcosBcosA+sin2B(1+cos2A),
sinA(sinAsinB-cosBcosA)=sinB+cosA(sinAcosB+sinBcosA)
sinAcosC=sinB+cosAsinC,∴sin(A-C)=sin(A+C),
∴A-C+A+C=π,即A=class="stub"π
2
,故△ABC是Rt△;正确;
③cosC+sinC=
2
sin(c+class="stub"π
4
)

∵0<C<π,∴class="stub"π
4
<C+class="stub"π
4
<class="stub"5π
4

∴cosC+sinC∈(- 1,
2
 ]
,故cosC+sinC的最小值为-
2
;错;
④∵cosA=cosB,且0<A、B<π,y=cosx在[0,π]上单调递减,
∴A=B;故正确;
⑤∵(1+tanA)(1+tanB)=2,
∴1+tanAtanB+tanB+tanA=2,即tan(A+B)(1-tanAtanB)+tanAtanB=1
∴tan(A+B)=1,∴A+B=kπ+class="stub"π
4
,故错;
故①②④正确.
故答案为:①②④

更多内容推荐