已知定义在R上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间?-数学

题目简介

已知定义在R上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间?-数学

题目详情

已知定义在R上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间?
题型:解答题难度:中档来源:不详

答案

∵函数y=f(x)是偶函数且在(2,6)上递增,∴y=f(x)在(-6,-2)上递减.
令u=2-x,则当x∈(4,8)时,u是减函数且u∈(-6,-2),而f(u)在(-6,-2)上递减,
∴y=f(2-x)在(4,8)上递增.
∴(4,8)是y=f(2-x)的单调递增区间.

更多内容推荐