如图,正方体的棱长为1,B′C∩BC′=O,求:(1)AO与A′C′所成角;(2)AO与平面ABCD所成角的正切值;(3)平面AOB与平面AOC所成角.-高二数学

题目简介

如图,正方体的棱长为1,B′C∩BC′=O,求:(1)AO与A′C′所成角;(2)AO与平面ABCD所成角的正切值;(3)平面AOB与平面AOC所成角.-高二数学

题目详情

如图,正方体的棱长为1,B′C∩BC′=O,求:
(1)AO与A′C′所成角;
(2)AO与平面ABCD所成角的正切值;
(3)平面AOB与平面AOC所成角.
题型:解答题难度:中档来源:不详

答案

(1)∵A′C′AC,∴AO与A′C′所成角就是∠OAC.∵OC⊥OB,AB⊥平面BC′,∴OC⊥OA,
在Rt△AOC中,OC═OC=
2
2
AC=
2
,∴∠OAC=30°.(4分)
(2)如图,作OE⊥BC于E,连接AE,∵平面BC′⊥平面ABCD,∴OE⊥平面ABCD,∠OAE为OA与平面ABCD所成角.
在Rt△OAE中,OE=class="stub"1
2
AE=
12+(class="stub"1
2
)
2
=
5
2
,∴tan∠OAE=class="stub"OE
AE
=
5
5
.(9分)
(3)∵OC⊥OA,OC⊥OB,∴OC⊥平面AOB.又∵OC⊂平面AOC,∴平面AOB⊥平面AOC,即平面AOB与平面AOC所成角为90°.(13分)

更多内容推荐