已知∫01(3ax+1)(x+b)dx=0,a,b∈R,试求ab的取值范围.-数学

题目简介

已知∫01(3ax+1)(x+b)dx=0,a,b∈R,试求ab的取值范围.-数学

题目详情

已知∫01(3ax+1)(x+b)dx=0,a,b∈R,试求ab的取值范围.
题型:解答题难度:中档来源:不详

答案

∫01(3ax+1)(x+b)dx
=∫01[3ax2+(3ab+1)x+b]dx
=[ax3+class="stub"1
2
(3ab+1)x2+bx]
|10

=a+class="stub"1
2
(3ab+1)+b=0
即3ab+2(a+b)+1=0
设ab=t∴a+b=-class="stub"3t+1
2

则a,b为方程x2+class="stub"3t+1
2
x+t=0两根
△=
(3t+1)2
4
-4t≥0
∴t≤class="stub"1
9
或t≥1
∴a•b∈(-∞,class="stub"1
9
]∪[1,+∞)

更多内容推荐