已知函数f(x)=xlnx.(1)求函数f(x)的单调递减区间;(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求实数a的取值范围.-数学

题目简介

已知函数f(x)=xlnx.(1)求函数f(x)的单调递减区间;(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求实数a的取值范围.-数学

题目详情

已知函数f(x)=xlnx.  
(1)求函数f(x)的单调递减区间;
(2)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求实数a的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)=xlnx,
∴f′(x)=1+lnx,x>0,
f′(x)=1+lnx<0⇒0<x<class="stub"1
e

∴函数f(x)的减区间为(0,class="stub"1
e
)

(2)∵f(x)≥-x2+ax-6在(0,+∞)上恒成立,
xlnx≥-x2+ax-6⇒a≤x+lnx+class="stub"6
x
,g(x)=x+lnx+class="stub"6
x

g′(x)=
x2+x-6
x2

当x>2时,g(x)是增函数,
当0<x<2时,g(x)是减函数,
∴a≤g(2)=5+ln2.
即实数a的取值范围是(-∞,5+ln2).

更多内容推荐