⊙O为△ABC的内切圆,且AB=10,BC=11,AC=7,MN切⊙O于点G,且分别交AB,BC于点M,N,则△BMN的周长是()A.10B.11C.12D.14-九年级数学

题目简介

⊙O为△ABC的内切圆,且AB=10,BC=11,AC=7,MN切⊙O于点G,且分别交AB,BC于点M,N,则△BMN的周长是()A.10B.11C.12D.14-九年级数学

题目详情

⊙O为△ABC的内切圆,且AB=10,BC=11,AC=7,MN切⊙O于点G,且分别交AB, BC于点M,N,则△BMN的周长是(    )
A.10     B.11    C.12D.14
题型:单选题难度:中档来源:不详

答案

D
根据题意,设BF=BD=x,则CD=CE=11-x,AE=AF=10-x,列出等式11-x+10-x=7,求出x的值,再由切线长定理得出△BMN的周长是BD+BF即可.

解:设BF=BD=x,
∵⊙O为△ABC的内切圆,且AB=10,BC=11,AC=7,
∴CD=CE=11-x,AE=AF=10-x,
∴11-x+10-x=7,
解得x=7,
∵MN切⊙O于点G,∴MF=MG,ND=NG,
∴△BMN的周长=BM+BN+MG+NG=BD+BF=2x=14,
故选D.
本题考查了切线长定理和三角形的内切圆.

更多内容推荐