已知数列{an}满足a1=1,an+1=2an+1(n∈N*)。(1)求数列{an}的通项公式;(2)若数列{bn}滿足,证明:数列{bn}是等差数列;(3)证明:(n∈N*)。-高三数学

题目简介

已知数列{an}满足a1=1,an+1=2an+1(n∈N*)。(1)求数列{an}的通项公式;(2)若数列{bn}滿足,证明:数列{bn}是等差数列;(3)证明:(n∈N*)。-高三数学

题目详情

已知数列{an}满足a1=1,an+1=2an+1(n∈N*)。
(1)求数列{an}的通项公式;
(2)若数列{bn}滿足,证明:数列{bn}是等差数列;
(3)证明:(n∈N*)。
题型:解答题难度:偏难来源:福建省高考真题

答案

解:(1))∵an+1=2an+1(n∈N*),
∴an+1+1=2(an+1),
∴{an+1}是以a1+1=2为首项,2为公比的等比数列
∴an+1=2n
即an=2n-1(n∈N*)。
(2)∵

∴2[(b1+b2+…+bn)-n]=nbn,①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1 ②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0,③
nbn+2-(n+1)bn+1+2=0 ④
③-④,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn(n∈N*),
∴{bn}是等差数列。
(3)∵,k=1,2,3,···,n

,k=1,2,3,···,n

更多内容推荐