如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.(1)求证:CD⊥PD;(2)求证:EF∥平面PAD.-高三数学

题目简介

如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.(1)求证:CD⊥PD;(2)求证:EF∥平面PAD.-高三数学

题目详情

如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点.
(1)求证:CD⊥PD;
(2)求证:EF∥平面PAD.
题型:解答题难度:偏易来源:不详

答案

 (1)∵PA⊥平面ABCD,而CD⊂平面ABCD,
∴PA⊥CD,又CD⊥AD,AD∩PA=A,
∴CD⊥平面PAD,∴CD⊥PD.
(2)取CD的中点G,连接EG、FG.
∵E、F分别是AB、PC的中点,
∴EG∥AD,FG∥PD,
∴平面EFG∥平面PAD,
又∵EF⊂平面EFG,
∴EF∥平面PAD.

更多内容推荐