优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­
如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­
题目简介
如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­
题目详情
如图1,A,D分别是矩形A
1
BCD
1
上的点,AB=2AA
1
=2AD=2,DC=2DD
1
,把四边形A
1
ADD
1
沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A
1
B,D
1
C得几何体ABA
1
DCD
1
.
(1)当点E在棱AB上移动时,证明:D
1
E⊥A
1
D;
(2)在棱AB上是否存在点E,使二面角D
1
ECD的平面角为
?若存在,求出AE的长;若不存在,请说明理由.
题型:解答题
难度:中档
来源:不详
答案
(1)见解析 (2)存在,
解:(1)证明,如图,以点D为坐标原点,DA,DC,DD1所在直线为x轴,y轴,z轴建立空间直角坐标系Dxyz,
则D(0,0,0),A(1,0,0),C(0,2,0),A1(1,0,1),D1(0,0,1).设E(1,t,0),
则
=(1,t,-1),
=(-1,0,-1),
∴
·
=1×(-1)+t×0+(-1)×(-1)=0,
∴D1E⊥A1D.
(2)假设存在符合条件的点E.设平面D1EC的法向量为n=(x,y,z),
由(1)知
=(-1,2-t,0),
则
得
令y=
,则x=1-
t,z=1,
∴n=
是平面D1EC的一个法向量,
显然平面ECD的一个法向量为
=(0,0,1),
则cos〈n,
〉=
=
=cos
,
解得t=2-
(0≤t≤2).
故存在点E,
当AE=2-
时,二面角D1ECD的平面角为
.
上一篇 :
已知向量,若,则______;-高二数学
下一篇 :
如图,在长方体ABCD­A1B1C1D
搜索答案
更多内容推荐
在空间直角坐标系中,已知点A(1,0,2),B(1,—3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是。-高三数学
已知集合,则.-高一数学
如图,在矩形ABCD中,AD=2,AB=4,E、F分别为边AB、AD的中点,现将△ADE沿DE折起,得四棱锥A—BCDE.(1)求证:EF∥平面ABC;(2)若平面ADE⊥平面BCDE,求四面体FDC
如图,在直三棱柱ABCA1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1A=,M是CC1的中点.(1)求证:A1B⊥AM;(2)求二面角BAMC的平面角的
如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,FA⊥CD.(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;(2)求二面
在正三棱柱中,已知,,则异面直线和所成角的正弦值为()A.1B.C.D.-高三数学
设、是平面直角坐标系(坐标原点为)内分别与轴、轴正方向相同的两个单位向量,且,,则的面积等于-高三数学
已知,且//(),则k=______.-高二数学
在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,且满足===(如图(1)),将△AEF沿EF折起到△EF的位置,使二面角EFB成直二面角,连接B、P(如图(2)).(1)求证:E⊥平面B
如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点.(1)求证://平面;(2)求与平面BDE所成角的余弦值;(3)线段PC上是否存在一点M,使得AM⊥平面-高二数学
如图,已知四棱锥中,底面为菱形,平面,,分别是的中点.(1)证明:平面;(2)取,若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值。-高二数学
在直角坐标平面内,已知向量,,A为动点,,则与夹角的最小值为()A.B.C.D.-高三数学
如图6,在三棱柱中,△ABC为等边三角形,侧棱⊥平面,,D、E分别为、的中点.(Ⅰ)求证:DE⊥平面;(Ⅱ)求BC与平面所成角;(Ⅲ)求三棱锥的体积.-高二数学
点A(x,2,3)与点B(-1,y,z)关于坐标平面yOz对称,则x=_____,y=______,z=______.-高二数学
设a=(x,4,3),b=(3,2,z),且a∥b,则等于()A.9B.-4C.D.-9-高二数学
若向量,,,,则实数的值为()A.B.C.2D.6-高二数学
如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1.(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理
(本小题满分12分)已知,,(1)求和.(2)若,作,求的面积-高三数学
设点M是Z轴上一点,且点M到A(1,0,2)与点B(1,-3,1)的距离相等,则点M的坐标是()A.(-3,-3,0)B.(0,0,-3)C.(0,-3,-3)D.(0,0,3)-高一数学
如图,已知棱长为的正方体,E为BC的中点,求证:平面平面。(12分)-高二数学
在长方体中,已知DA=DC=4,DD1=3,求异面直线A1B与B1C所成角的余弦值。-高二数学
已知空间四边形ABCD中,O是空间中任意一点,点M在OA上,且OM=2MA,N为BC中点,则=()A.B.C.D.-高二数学
已知向量=(cos120°,sin120°),=(cos30°,sin30°),则△ABC的形状为A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形-高二数学
如图,四棱锥的底面为直角梯形,,,,,平面(1)在线段上是否存在一点,使平面平面,并说明理由;(2)求二面角的余弦值.-高三数学
已知四边形ABCD是菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,G,H分别是CE,CF的中点.(1)求证:平面AEF∥平面BDGH(2)若平面BDGH与平面ABCD所成的
空间直角坐标系中,点(-2,1,9)关于x轴对称的点的坐标是A.(-2,1,9)B.(-2,-1,-9)C.(2,-1,9)D.(2,1,-9)-高一数学
已知向量.⑴当的值;⑵求的最小正周期和单调递增区间-高三数学
点关于轴的对称点为()A.B.C.D.-高一数学
(本小题满分10分)如图,已知面积为1的正三角形ABC三边的中点分别为D、E、F,从A,B,C,D,E,F六个点中任取三个不同的点,所构成的三角形的面积为X(三点共线时,规定X=0)(1)求-高三数学
如图,在四棱锥中,底面,,,,是的中点.(Ⅰ)证明:;(Ⅱ)证明:平面;(Ⅲ)求二面角的正切值-高三数学
⊿ABC的三个顶点分别是,,,则AC边上的高BD长为()A.B.4C.5D.-高二数学
若向量,且与的夹角余弦为,则等于_________________.-高二数学
在正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是________.-高三数学
在四面体P-ABC中,PA,PB,PC两两垂直,设PA=PB=PC=a,则点P到平面ABC的距离为________.-高三数学
若,,是平面内的三点,设平面的法向量,则-高二数学
在棱长为1的正方体ABCD-A1B1C1D1中,M为BB1的中点,则点D到直线A1M的距离为()A.B.C.D.-高二数学
(本小题满分12分)如图,四边形是边长为1的正方形,平面,平面,且(1)以向量方向为侧视方向,侧视图是什么形状?说明理由并画出侧视图。(2)求证:平面;(3)证明:平面ANC⊥平面BD-高一数学
已知向量与平行,则=.-高二数学
在空间直角坐标系中,点关于轴的对称点的坐标为()A.B.C.D.-高二数学
已知若,则的值为()A.B.C.D.-高二数学
过正方形ABCD的顶点A,引PA⊥平面ABCD.若PA=BA,则平面ABP和平面CDP所成的二面角的大小是().A.30°B.45°C.60°D.90°-高三数学
在空间直角坐标系中,满足条件的点构成的空间区域的体积为(分别表示不大于的最大整数),则=""_-高三数学
如图,在长方体中,,,.写出,,,四点的坐标.-数学
给出下列命题:①直线l的方向向量为a=(1,-1,2),直线m的方向向量为b=(2,1,-),则l与m垂直.②直线l的方向向量为a=(0,1,-1),平面α的法向量为n=(1,-1,-1),则l⊥α.
如图,在四棱锥中,底面是菱形,,,,平面,是的中点,是的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面⊥平面;(Ⅲ)求平面与平面所成的锐二面角的大小.-高三数学
(12分)如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,SA=AD,M为AB中点,N为SC中点.(1)证明:MN//平面SAD;(2)证明:平面SMC⊥平面SCD;-高二数学
设,,,.记为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数的值域为()A.B.C.D.-高二数学
如图,四棱锥的底面是平行四边形,平面,,,点是上的点,且.(Ⅰ)求证:;(Ⅱ)求的值,使平面;(Ⅲ)当时,求三棱锥与四棱锥的体积之比.-高三数学
点P(1,2,3)关于OZ轴的对称点的坐标为()A.(-1,-2,3)B.(1,2,-3)C.(-1,-2,-3)D.(-1,2,-3)-高二数学
已知,则实数k的值是。-高三数学
返回顶部
题目简介
如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1­
题目详情
(1)当点E在棱AB上移动时,证明:D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1ECD的平面角为
答案
则D(0,0,0),A(1,0,0),C(0,2,0),A1(1,0,1),D1(0,0,1).设E(1,t,0),
则
∴
∴D1E⊥A1D.
(2)假设存在符合条件的点E.设平面D1EC的法向量为n=(x,y,z),
由(1)知
则
令y=
∴n=
显然平面ECD的一个法向量为
则cos〈n,
=
解得t=2-
故存在点E,
当AE=2-