观察算式:11×2=1-12=1211×2+12×3=1-12+12-13=2311×2+12×3+13×4=1-12+12-13+13-14=34(1)按规律填空11×2+12×3+13×4+14×

题目简介

观察算式:11×2=1-12=1211×2+12×3=1-12+12-13=2311×2+12×3+13×4=1-12+12-13+13-14=34(1)按规律填空11×2+12×3+13×4+14×

题目详情

观察算式:
1
1×2
=1-
1
2
=
1
2

1
1×2
+
1
2×3
=1-
1
2
+
1
2
-
1
3
=
2
3

1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4

(1)按规律填空
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=______
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
=______
(2)若n为正整数,化简:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+
1
(n+3)(n+4)
+…+
1
(n+99)(n+100)
,并写出求解过程.
题型:解答题难度:中档来源:不详

答案

(1)按规律填空class="stub"1
1×2
+class="stub"1
2×3
+class="stub"1
3×4
+class="stub"1
4×5
+class="stub"1
5×6
=1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+class="stub"1
3
-class="stub"1
4
+class="stub"1
4
-class="stub"1
5
+class="stub"1
5
-class="stub"1
6
=1-class="stub"1
6
=class="stub"5
6
class="stub"1
1×2
+class="stub"1
2×3
+class="stub"1
3×4
+class="stub"1
4×5
+…+class="stub"1
99×100
=1-class="stub"1
100
=class="stub"99
100

(2)class="stub"1
n(n+1)
+class="stub"1
(n+1)(n+2)
+class="stub"1
(n+2)(n+3)
+class="stub"1
(n+3)(n+4)
+…+class="stub"1
(n+99)(n+100)

=class="stub"1
n
-class="stub"1
n+1
+class="stub"1
n+1
-class="stub"1
n+2
+…+class="stub"1
n+99
-class="stub"1
n+100

=class="stub"1
n
-class="stub"1
n+100

更多内容推荐