(本题满分12分)如图的多面体是底面为平行四边形的直四棱柱ABCD—,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°。AB=2AD=2.∠BAD=60。.(I)求证:BD⊥平面ADG;

题目简介

(本题满分12分)如图的多面体是底面为平行四边形的直四棱柱ABCD—,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°。AB=2AD=2.∠BAD=60。.(I)求证:BD⊥平面ADG;

题目详情

(本题满分12分)
如图的多面体是底面为平行四边形的直四棱柱ABCD—,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°。AB=2AD=2.∠BAD=60。.

(I)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.                                                              
题型:解答题难度:中档来源:不详

答案

(Ⅰ)证明:在△BAD中,AB=2AD=2,∠BAD=60°,

由余弦定理得,BD=

AD⊥BD                                 ----------------------------(2分)
又GD⊥平面ABCD
∴GD⊥BD,
GDAD=D,
∴BD⊥平面ADG……………………4分
(Ⅱ)解:以D为坐标原点,OA为x轴,OB为y轴,OG为z轴建立空间直角坐标系D—xyz
则有A(1,0,0),B(0,,0),G(0,0,1),E(0,
     -------------------------------(6分)
设平面AEFG法向量为

     --------------------------------(9分)
平面ABCD的一个法向量   -------------------------(10分)
设面ABFG与面ABCD所成锐二面角为
      ---------------------------------------(12

更多内容推荐