如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG。(1)求证:①DE=DG;②DE⊥DG;(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求

题目简介

如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG。(1)求证:①DE=DG;②DE⊥DG;(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求

题目详情

如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG。
(1)求证:①DE=DG;②DE⊥DG;
(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);
(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想。
题型:解答题难度:中档来源:同步题

答案

解:(1)∵四边形ABCD是正方形,
∴DC=DA,∠DCE=∠DAG=90°,
又∵CE=AG,
∴△DCE≌△GDA,
∴DE=DG,∠EDC=∠GDA,
又∵∠ADE+∠EDC=90°,
∴∠ADE+∠GDA=90°,
∴DE⊥DG;
(2)如图
(3)四边形CEFK为平行四边形,
证明:设CK、DE相交于M点,
∵四边形ABCD和四边形DEFG都是正方形,
∴AB∥CD,AB=CD,EF=DG,EF∥DG,
∵BK=AG,
∴KG=AB=CD,
∴四边形CKGD是平行四边形,
∴CK=DG=EF,CK∥DG,
∴∠KME=∠GDE=∠DEF=90°,
∴∠KME+∠DEF=180°,
∴CK∥EF,
∴四边形CEFK为平行四边形;

更多内容推荐