已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为aba+b的是()A.B.C.D.-数学

题目简介

已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为aba+b的是()A.B.C.D.-数学

题目详情

已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为
ab
a+b
的是(  )
A.B.C.D.
题型:单选题难度:中档来源:不详

答案

A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a-x+b-x=c,求出x=class="stub"a+b-c
2
,故本选项错误;
B、设圆切AB于F,圆的半径是y,连接OF,如图(2),
则△BCA△OFA,∴class="stub"OF
BC
=class="stub"AO
AB

class="stub"y
a
=class="stub"b-y
c
,解得:y=class="stub"ab
a+c
,故本选项错误;
C、连接OE、OD,
∵AC、BC分别切圆O于E、D,
∴∠OEC=∠ODC=∠C=90°,
∵OE=OD,
∴四边形OECD是正方形,
∴OE=EC=CD=OD,
设圆O的半径是r,
∵OEBC,∴∠AOE=∠B,
∵∠AEO=∠ODB,
∴△ODB△AEO,
class="stub"OE
BD
=class="stub"AE
OD

class="stub"r
a-r
=class="stub"b-r
r

解得:r=class="stub"ab
a+b
,故本选项正确;
D、O点连接三个切点,从上至下一次为:OD,OE,OF;并设圆的半径为x;
容易知道BD=BF,所以AD=BD-BA=BF-BA=a+x-c;
又∵b-x=AE=AD=a+x-c;所以x=class="stub"b+c-a
2
,故本选项错误.
故选C.

更多内容推荐