如图,l1∥l2,l3与l1、l2相交于C、D二点,点P在l3上,在图(1)、(2)、(3)中分别探究∠PAC、∠APB、∠PBD三者间关系,并证明.-数学

题目简介

如图,l1∥l2,l3与l1、l2相交于C、D二点,点P在l3上,在图(1)、(2)、(3)中分别探究∠PAC、∠APB、∠PBD三者间关系,并证明.-数学

题目详情

如图,l1l2,l3与l1、l2相交于C、D二点,点P在l3上,在图(1)、(2)、(3)中分别探究∠PAC、∠APB、∠PBD三者间关系,并证明.

360优课网
题型:解答题难度:中档来源:不详

答案


360优课网
(1)∠APB=∠PAC+∠PBD.
证明:过点P作PEl1,
∵l1l2,
∴PEl1l2,
∴∠1=∠PAC,∠2=∠PBD,
∴∠APB=∠1+∠2=∠PAC+∠PBD;

(2)∠PAC+∠APB=∠PBD.
证明:∵l1l2,
∴∠1=∠PBD,
∵∠1=∠PAC+∠APB,
∴∠PAC+∠APB=∠PBD.

(3)∠PBD+∠APB=∠PAC.
证明:∵l1l2,
∴∠1=∠PAC,
∵∠1=∠PBD+∠APB,
∴∠PBD+∠APB=∠PAC.

更多内容推荐