如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,GE⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法:①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;

题目简介

如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,GE⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法:①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;

题目详情

如图,ABCD,∠BAC与∠DCA的平分线相交于点G,GE⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法:①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;④若∠EGH:∠ECH=2:7,则∠EGF=50度.其中正确的有(  )
360优课网
A.①②③④B.②③④C.①③④D.①②④
题型:单选题难度:中档来源:不详

答案

①中,根据两条直线平行,同旁内角互补,得∠BAC+∠ACD=180°,
再根据角平分线的概念,得∠GAC+∠GCA=class="stub"1
2
∠BAC+class="stub"1
2
∠ACD=class="stub"1
2
×180°=90°,
再根据三角形的内角和是180°,得AG⊥CG;
②中,根据等角的余角相等,得∠CGE=∠GAC,故∠BAG=∠CGE;
③中,根据三角形的面积公式,
∵AF=CF,∴S△AFG=S△CFG;
④中,根据题意,得:在四边形GECH中,∠EGH+∠ECH=180度.
又∠EGH:∠ECH=2:7,则∠EGH=180°×class="stub"2
9
=40°,∠ECH=180°×class="stub"7
9
=140度.
∵CG平分∠ECH,∴∠FCG=class="stub"1
2
∠ECH=70°,
根据直角三角形的两个锐角互余,得∠EGC=20°.
∵FG=FC,
∴∠FGC=∠FCG=70°,
∴∠EGF=50°.
故上述四个都是正确的.
故选A.

更多内容推荐