数列{an}的前n项和为Sn,且满足Sn=2(an-1),数列{bn}中,b1=1,且点P(bn,bn+1)在直线x-y+2=0上,(1)求数列{an}、{bn}的通项公式;(2)设Hn=1b1b2+

题目简介

数列{an}的前n项和为Sn,且满足Sn=2(an-1),数列{bn}中,b1=1,且点P(bn,bn+1)在直线x-y+2=0上,(1)求数列{an}、{bn}的通项公式;(2)设Hn=1b1b2+

题目详情

数列{an}的前n项和为Sn,且满足Sn=2(an-1),数列{bn}中,b1=1,且点P(bn,bn+1)在直线x-y+2=0上,
(1)求数列{an}、{bn}的通项公式;
(2)设Hn=
1
b1b2
+
1
b2b3
+…+
1
bn-1bn
,求使得Hn
m
30
对所有的n∈N*都成立的最小正整数m;
(3)设Tn=
b1
a1
+
b2
a2
+…+
bn
an
,试比较Tn与3的大小关系.
题型:解答题难度:中档来源:不详

答案

(1)∵Sn=2(an-1),∴Sn+1=2(an+1-1)
两式相减得:an+1=2an+1-2an
an+1
an
=2
,又∵a1=2
∴{an}是以2为首项,以2为公比的等比数列,∴an=2n
又P(bn,bn+1)在直线x-y+2=0上,
∴bn-bn+1+2=0⇒bn+1-bn=2,
又∵b1=1,∴}、{bn}是以1为首项,以2为公差的等差数列,∴bn=2n-1
(2)class="stub"1
bn-1bn
=class="stub"1
(2n-3)(2n-1)
=class="stub"1
2
(class="stub"1
2n-3
-class="stub"1
2n-1
)

Hn=class="stub"1
b1b2
+class="stub"1
b2b3
+…+class="stub"1
bn-1bn
=class="stub"1
2
(1-class="stub"1
2n-1
)

要使class="stub"1
2
(1-class="stub"1
2n-1
)<class="stub"m
30
所有的n∈N*都成立,必须且仅需满足class="stub"1
2
≤class="stub"m
30
⇒m≥15

所以满足要求的最小正整数为15,
(3)Tn=class="stub"1
2
+class="stub"3
22
+class="stub"5
23
+…+class="stub"2n-1
2n
class="stub"1
2
Tn=class="stub"1
22
+class="stub"3
23
+class="stub"5
24
+…+class="stub"2n-1
2n+1

相减得:class="stub"1
2
Tn=class="stub"1
2
+(class="stub"1
2
+class="stub"1
22
+…+class="stub"1
2n-1
)-class="stub"2n-1
2n+1

化简得Tn=3-class="stub"1
2n-2
-class="stub"2n-1
2n
<3

所以Tn<3

更多内容推荐