数列{an}的前n项和为Sn,当n≥1时,Sn+1是an+1与Sn+1+2的等比中项.(Ⅰ)求证:当n≥1时,1Sn-1Sn+1=12;(Ⅱ)设a1=-1,求Sn的表达式;(Ⅲ)设a1=-1,且{n(

题目简介

数列{an}的前n项和为Sn,当n≥1时,Sn+1是an+1与Sn+1+2的等比中项.(Ⅰ)求证:当n≥1时,1Sn-1Sn+1=12;(Ⅱ)设a1=-1,求Sn的表达式;(Ⅲ)设a1=-1,且{n(

题目详情

数列{an}的前n项和为Sn,当n≥1时,Sn+1是an+1与Sn+1+2的等比中项.
(Ⅰ)求证:当n≥1时,
1
Sn
-
1
Sn+1
=
1
2

(Ⅱ)设a1=-1,求Sn的表达式;
(Ⅲ)设a1=-1,且{
n
(pn+q)Sn
}
是等差数列(pq≠0),求证:
p
q
是常数.
题型:解答题难度:中档来源:不详

答案

(1)证明:由题意得,当n≥1时,
S2n+1
=an+1(Sn+1+2)=(Sn+1-Sn)(Sn+1+2)

⇒class="stub"1
Sn
-class="stub"1
Sn+1
=class="stub"1
2
.…(4分)
(2)由(1)得:class="stub"1
Sn+1
-class="stub"1
Sn
=-class="stub"1
2
及a1=-1
可知:数列{class="stub"1
Sn
}
是以-1为首项,以-class="stub"1
2
为公差的等差数列,
可求得:Sn=-class="stub"2
n+1
.…(8分)
(3)由(2)得Cn=-
n2+n
2(pn+q)
,且{Cn}是等差数列,设公差为d.
则-n2-n=…=2dpn2+[2dq+2p(c1-d)]n+2q(c1-d),
所以c1-d=0,2dp=-1,2dq+2p(c1-d)=-1,即2dp=2dq⇒p=q,
所以class="stub"p
q
=1
(常数).…(13分)

更多内容推荐