已知正数列{an}的前n项和为Sn,且有Sn=14(an+1)2,数列{bn}是首项为1,公比为12的等比数列.(1)求数列{an}、{bn}的通项公式;(2)若c=anbn,求:数列{cn}的前n项

题目简介

已知正数列{an}的前n项和为Sn,且有Sn=14(an+1)2,数列{bn}是首项为1,公比为12的等比数列.(1)求数列{an}、{bn}的通项公式;(2)若c=anbn,求:数列{cn}的前n项

题目详情

已知正数列{an}的前n项和为Sn,且有Sn=
1
4
(an+1)2
,数列{bn}是首项为1,公比为
1
2
的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)若c=anbn,求:数列{cn}的前n项和Tn
(3)求证:
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
5
3
题型:解答题难度:中档来源:不详

答案

(1)由Sn=class="stub"1
4
(an+1)2

当n=1时,a1=class="stub"1
4
(a1+1)2
,∴a1=1,
n≥2时,Sn-1=class="stub"1
4
(an-1+1)2

an=Sn-Sn-1=class="stub"1
4
(
a2n
-
a2n-1
+2an-2an-1)

即(an+an+1)(an-an-1-2)=0,∵an>0,
∴数列{an}是a1=1,d=2的等差数列
∴an=a1+(n-1)d=2n-1.
∵数列{bn}是首项为1,公比为class="stub"1
2
的等比数列.
bn=b1qn-1=1×(class="stub"1
2
)n-1
=(class="stub"1
2
)n-1

(2)cn=anbn=class="stub"2n-1
2n-1
,Tn=c1+c2+…+cn
Tn=1+class="stub"3
2
+class="stub"5
22
+…+class="stub"2n-1
2n-1
,①
class="stub"1
2
Tn=class="stub"1
2
+class="stub"3
22
+…+class="stub"2n-3
2n-1
+class="stub"2n-1
2n
,②
①-②得class="stub"1
2
Tn
=1+1+class="stub"1
2
+class="stub"1
22
+…+class="stub"1
2n-2
-class="stub"2n-1
2n
=
2(1-(class="stub"1
2
)n)
1-class="stub"1
2
-1-class="stub"2n-1
2n
=3-class="stub"1
2n-2
-class="stub"2n-1
2n

Tn=6-class="stub"2n+3
2n-1

(3)∵Sn=class="stub"1
4
(an+1)2=class="stub"1
4
(2n-1+1)2
=n2,
当n≥2,class="stub"1
Sn
=class="stub"1
n2
<class="stub"1
n2-1
=class="stub"1
2
(class="stub"1
n-1
-class="stub"1
n+1
)

class="stub"1
S1
+class="stub"1
S2
+…+class="stub"1
Sn
<1+class="stub"1
22
+class="stub"1
2
[(class="stub"1
2
-class="stub"1
4
)+(class="stub"1
3
-class="stub"1
5
)+…+(class="stub"1
n-2
-class="stub"1
n
)+(class="stub"1
n-1
-class="stub"1
n+1
)]

=1+class="stub"1
4
+class="stub"1
2
(class="stub"1
2
+class="stub"1
3
-class="stub"1
n
-class="stub"1
n+1
)
<1+class="stub"1
4
+class="stub"1
2
(class="stub"1
2
+class="stub"1
3
)
=1+class="stub"1
4
+class="stub"1
4
+class="stub"1
6
=class="stub"5
3

更多内容推荐