设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3,…).(1)求证:数列{an}为等差数列,并写出an关于n的表达式;(2)若数列{1anan+1}前n项和为T

题目简介

设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3,…).(1)求证:数列{an}为等差数列,并写出an关于n的表达式;(2)若数列{1anan+1}前n项和为T

题目详情

设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3,…).
(1)求证:数列{an}为等差数列,并写出an关于n的表达式;
(2)若数列{
1
anan+1
}
前n项和为Tn,问满足Tn
100
209
的最小正整数n是多少?.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1),得an-an-1=2(n=2,3,4,).
所以数列{an}是以a1=1为首项,2为公差的等差数列.
所以an=2n-1.
(Ⅱ)Tn=class="stub"1
a1a2
+class="stub"1
a2a3
++class="stub"1
an-1an
=class="stub"1
1×3
+class="stub"1
3×5
+class="stub"1
5×7
++class="stub"1
(2n-1)(2n+1)
=class="stub"1
2
[(class="stub"1
1
-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
5
)+(class="stub"1
5
-class="stub"1
7
)++(class="stub"1
2n-1
-class="stub"1
2n+1
)]
=class="stub"1
2
(1-class="stub"1
2n+1
)
=class="stub"n
2n+1

Tn=class="stub"n
2n+1
>class="stub"100
209
,得n>class="stub"100
9
,满足Tn>class="stub"100
209
的最小正整数为12.

更多内容推荐