已知函数f(x)=log2x-log12x,数列{an}的前n项和为Sn,f(2an)=6n-92,n∈N*.(I)求数列{an}的通项公式;(II)设bn=Snn+λ,cn=bn•2bn,若非零常数

题目简介

已知函数f(x)=log2x-log12x,数列{an}的前n项和为Sn,f(2an)=6n-92,n∈N*.(I)求数列{an}的通项公式;(II)设bn=Snn+λ,cn=bn•2bn,若非零常数

题目详情

已知函数f(x)=log2
x
-log
1
2
x,数列{an}的前n项和为Sn,f(2an)=6n-
9
2
,n∈N*
(I)求数列{an}的通项公式;
(II)设bn=
Sn
n+λ
cn=bn2bn
,若非零常数λ使得{bn}为等差数列,求数列{cn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(I)∵f(x)=log2
x
-logclass="stub"1
2
x
=log2xclass="stub"1
2
+log2x=class="stub"1
2
log2x+log2x=class="stub"3
2
log2x

f(2an)=6n-class="stub"9
2
=class="stub"3
2
log2(2an)
=class="stub"3
2
an

故an=4n-3
(II)由(I)得Sn=2n2-n,要使bn=
Sn
n+λ
=
2n(n-class="stub"1
2
)
n+λ
为等差数列的通项公式
则bn=
2n(n-class="stub"1
2
)
n+λ
应是关于n的一次函数,又由λ≠0
故λ=-class="stub"1
2

此时bn=2n,cn=bn2bn=2n•4n,
故Tn=2•41+2×2•42+…+2(n-1)•4n-1+2n•4n,…①
4Tn=0+2•42+4•43+…+2(n-1)•4n+2n•4n+1,…②
①-②得:
-3Tn=2•41+2•42+…+2•4n-2n•4n+1=(class="stub"2
3
-2n)4n+1-class="stub"8
3

∴Tn=(class="stub"2
3
n-class="stub"2
9
)4n+1+class="stub"8
9

更多内容推荐