阅读并解答问题.如图,已知:AD为△ABC的中线,求证:AB+AC>2AD。证明:延长AD至E使得DE=AD,连接EC,则AE=2AD∵AD为△ABC的中线,∴BD=CD在△ABD和△CED中,∴△A

题目简介

阅读并解答问题.如图,已知:AD为△ABC的中线,求证:AB+AC>2AD。证明:延长AD至E使得DE=AD,连接EC,则AE=2AD∵AD为△ABC的中线,∴BD=CD在△ABD和△CED中,∴△A

题目详情

阅读并解答问题.
如图,已知:AD为△ABC的中线,求证:AB+AC>2AD。
证明:延长AD至E使得DE=AD,连接EC,则AE=2AD
∵AD为△ABC的中线,
∴BD=CD
在△ABD和△CED中
∴△ABD≌△CED,
∴AB=EC,
在△ACE中,根据三角形的三边关系有AC+EC ____AE
而AB=EC,AE=2AD
∴AB+AC>2AD
这种辅助线方法,我们称为“倍长中线法”,
请利用这种方法解决以下问题:
(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,
求证:CD=
(2)把(1)中的结论用简洁的语言描述出来。
题型:解答题难度:中档来源:江苏省期末题

答案

解:(1)证明:延长CD至E使DE=CD,连接EB,AE.
∵CD为Rt△ABC的中线,
∴AD=CD,
∵CD=DE,∠ADC=∠EDB,
∴△ADC≌△EDB,
∴∠ACD=∠DEB,AC=BE,
∴AC∥BE,
∴四边形ACBE是平行四边形,
又∵∠ACB=90°,
∴平行四边形ACBE是矩形,
∴AB=CE,CD=DE=AD=BD,
∴CD=AB;
(2)直角三角形斜边上的中线等于斜边的一半。

更多内容推荐