已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4成等差数列,(Ⅰ)证明:12S3,S6,S12-S6成等比数列;(Ⅱ)求和Tn=a1+2a4+3a7+…+
已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4成等差数列,(Ⅰ)证明:12S3,S6,S12-S6成等比数列;(Ⅱ)求和Tn=a1+2a4+3a7+…+na3n-2。
题目简介
已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4成等差数列,(Ⅰ)证明:12S3,S6,S12-S6成等比数列;(Ⅱ)求和Tn=a1+2a4+3a7+…+
题目详情
已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4成等差数列,
(Ⅰ)证明:12S3,S6,S12-S6成等比数列;
(Ⅱ)求和Tn=a1+2a4+3a7+…+na3n-2。
答案
即
变形得
由
得
所以12S3,S6,S12-S6成等比数列。
(Ⅱ)解:
即
①×
所以,