如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.-八年级数学

题目简介

如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.-八年级数学

题目详情

如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H.
(1)求证:△BCE≌△ACD;
(2)求证:FH∥BD.
题型:证明题难度:中档来源:云南省期中题

答案

证明:(1)∵△ABC和△CDE都是等边三角形,
∴BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴∠BCA+∠ACE=∠ECD+∠ACE,
即∠BCE=∠ACD,
∵在△BCE和△ACD中,

∴△BCE≌△ACD (SAS)。
(2)由(1)知△BCE≌△ACD,则∠CBF=∠CAH,BC=AC
又∵△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,
∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF,
在△BCF和△ACH中,

∴△BCF≌△ACH (ASA),
∴CF=CH,
又∵∠FCH=60°,
∴△CHF为等边三角形
∴∠FHC=∠HCD=60°,
∴FH∥BD。

更多内容推荐