(1)如图(1),正方形ABCD中,E为边CD上一点,连结AE,过点A作AF⊥AE交CB的延长线于F,猜想AE与AF的数量关系,并说明理由;(2)如图(2),在(1)的条件下,连结AC,过点A作AM⊥

题目简介

(1)如图(1),正方形ABCD中,E为边CD上一点,连结AE,过点A作AF⊥AE交CB的延长线于F,猜想AE与AF的数量关系,并说明理由;(2)如图(2),在(1)的条件下,连结AC,过点A作AM⊥

题目详情

(1)如图(1),正方形ABCD中,E为边CD上一点,连结AE,过点A作AF⊥AE交CB的延长线于F,猜想AE与AF的数量关系,并说明理由;
(2)如图(2),在(1)的条件下,连结AC,过点A作AM⊥AC交CB的延长线于M,观察并猜想CE与MF的数量关系(不必说明理由);
(3)解决问题:
①王师傅有一块如图所示的板材余料,其中∠A=∠C=90°,AB=AD。王师傅想切一刀后把它拼成正方形。请你帮王师傅在图(3)中画出剪拼的示意图;
②王师傅现有两块同样大小的该余料,能否在每块上各切一刀,然后拼成一个大的正方形呢?若能,请你画出剪拼的示意图;若不能,简要说明理由。

题型:解答题难度:偏难来源:江苏省期末题

答案

解:(1)AE=AF;
理由:∵∠BAF+∠BAE=90°,∠DAE+∠BAE=90°,
∴∠BAF=∠DAE,
∵AB=AD,∠ADE=∠ABF,
∴△ABF≌△ADE(ASA),
∴AE=AF。
(2)CE=MF;
∵四边形ABCD是正方形,
∴∠AMF=∠ACB=45°,AM=AC,
∵△ABF≌△ADE,
∴∠FAB+∠ABF=∠DAE+∠AED,即∠AFB=∠AEC,
∴∠MAF=∠EAC,
∴△AMF≌△ACE,
∴CE=MF。
(3)①如图所示,把△ABE切下,拼到△ADF的位置,

∵AB=AD,∠BAE+∠DAE=∠DAF+∠DAE,
∴∠BAE=∠DAF,
∵∠AEB=∠AFD=90°,
∴∠ABE=∠ADF,
∴△ABE≌△ADF,
∵AE=AD=CE,∠AEC=∠ECF=∠AFC=90°,
∴四边形AECF是正方形。
②如下图所示:

更多内容推荐