如图,直三棱柱ABC-A1B1C1侧面AA1B1B是边长为5的正方形,AB⊥BC,AC与BC1成60°角,则AC长()A.13B.10C.53D.52-数学

题目简介

如图,直三棱柱ABC-A1B1C1侧面AA1B1B是边长为5的正方形,AB⊥BC,AC与BC1成60°角,则AC长()A.13B.10C.53D.52-数学

题目详情

如图,直三棱柱ABC-A1B1C1侧面AA1B1B是边长为5的正方形,AB⊥BC,AC与BC1成60°角,则AC长(  )
A.13B.10C.5
3
D.5
2
360优课网
题型:单选题难度:偏易来源:不详

答案


360优课网
设BC=a,连接BA1,BC1
∵三棱柱ABC-A1B1C1是直三棱柱且侧面AA1B1B是边长为5的正方形
∴AB=CC1=5
∴根据勾股定理可得A1B2=50,
∵AB⊥BC
∴AC2=25+a2
∵在△C1B1B中,BC12=25+a2
∴BC1=AC
∴△BA1C1为等腰三角形
∵AC与BC1成60°角且ACA1C1
∴∠A1C1B=60°
∴△BA1C1为等边三角形
∴50=25+a2
∴a=5
∴AC=5
2

故选D.

更多内容推荐