,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.-九

题目简介

,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.-九

题目详情

,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE.

(1)求证:直线DE是⊙O的切线;
(2)连接OC交DE于点F,若OF=CF,求tan∠ACO的值.
题型:解答题难度:中档来源:不详

答案

(1)证明OD⊥DE,得直线DE是⊙O的切线    (2)

试题分析:(1)连接BD、OD;以AB为直径作⊙O交AC边于点D,,在直角三角形ABD中O是AB的中点,DO=AO,;在直角三角形BCD中E是边BC的中点,DE=CE,,在Rt△ABC中,∠ABC=90°,,所以,OD⊥DE,直线DE是⊙O的切线
(2)连接OE;连接OC交DE于点F,若OF=CF,(对顶角相等),由(1)知D、E是AC、BC的中点,所以DE是三角形ABC的中位线,所以DF=EF,,由三角函数定义,解得tan∠ACO=
点评:本题考查直线与圆相切,判定直线与圆的位置关系的方法是本题的关键

更多内容推荐