在数列{an}中,a1=1,an+1=(1+1n)an+n+12n.(1)求数列{an}的前n项和Sn;(2)在数列{an}中,是否存在连续三项成等差数列?若存在,写出满足条件的所有项;若不存在,说明

题目简介

在数列{an}中,a1=1,an+1=(1+1n)an+n+12n.(1)求数列{an}的前n项和Sn;(2)在数列{an}中,是否存在连续三项成等差数列?若存在,写出满足条件的所有项;若不存在,说明

题目详情

在数列{an}中,a1=1,an+1=(1+
1
n
)an+
n+1
2n

(1)求数列{an}的前n项和Sn
(2)在数列{an}中,是否存在连续三项成等差数列?若存在,写出满足条件的所有项;若不存在,说明理由.
题型:解答题难度:中档来源:不详

答案

(1)∵a1=1,an+1=(1+class="stub"1
n
)an+class="stub"n+1
2n

∴an+1=(1+class="stub"1
n
)an+class="stub"n+1
2n

an+1=class="stub"n+1
n
an+class="stub"n+1
n
×class="stub"1
2

n×an+1=(n+1)an+(n+1)×class="stub"1
2

an+1
n+1
-
an
n
=class="stub"1
2n

an
n
-
an-1
n-1
=class="stub"1
2n-1


a2
2
-
a1
1
=class="stub"1
2

等式两边相加,得:
an
n
-
a1
1
=class="stub"1
2
+class="stub"1
4
+class="stub"1
8
+…+class="stub"1
2n-1
=
class="stub"1
2
(1-class="stub"1
2n-1
)
1-class="stub"1
2
=1-class="stub"1
2n-1

an=2n-class="stub"2n
2n

∵Sn=2(1+2+3+…+n)-(class="stub"2×1
21
+class="stub"2×2
22
+…+class="stub"2n
2n

=n(n+1)-(class="stub"2×1
21
+class="stub"2×2
22
+…+class="stub"2n
2n
).
设S=class="stub"2×1
21
+class="stub"2×2
22
+…+class="stub"2n
2n
,①
class="stub"1
2
S
=class="stub"2×1
22
+class="stub"2×2
23
+…+class="stub"2n
2n+1
,②
①-②,得class="stub"1
2
S
=1+class="stub"2
22
+class="stub"2
23
+…+class="stub"2
2n
-class="stub"2n
2n+1

=1+
class="stub"1
2
(1-class="stub"1
2n-1
)
1-class="stub"1
2
-class="stub"2n
2n+1

=2-class="stub"1
2n-1
-class="stub"2n
2n+1

∴S=4-class="stub"4
2n
-class="stub"2n
2n

∴Sn=n(n+1)-4+class="stub"4+2n
2n

(2)假设在数列{an}中,存在连续三项ak-1,ak,ak+1(k∈N*,k≥2)成等差数列,
则ak-1+ak+1=2ak,即[2(k-1)-
2(k-1)
2k-1
]+[2(k+1)-
2(k+1)
2k+1
]=2(2k-class="stub"2k
2k
),
class="stub"3-k
2k
=0,∴k=3.
∴在数列{an}中,有且仅有连续三项a2,a3,a4成等差数列.

更多内容推荐