已知函数f(x)=2-1x,数列{an}满足an=f(an-1)(n≥2,n∈N+).(Ⅰ)若a1=35,数列{bn}满足bn=1an-1,求证:数列{bn}是等差数列;(Ⅱ)若a1=35,数列{an

题目简介

已知函数f(x)=2-1x,数列{an}满足an=f(an-1)(n≥2,n∈N+).(Ⅰ)若a1=35,数列{bn}满足bn=1an-1,求证:数列{bn}是等差数列;(Ⅱ)若a1=35,数列{an

题目详情

已知函数f(x)=2-
1
x
,数列{an}满足an=f(an-1)(n≥2,n∈N+).
(Ⅰ)若a1=
3
5
,数列{bn}满足bn=
1
an-1
,求证:数列{bn}是等差数列;
(Ⅱ)若a1=
3
5
,数列{an}中是否存在最大项与最小项,若存在,求出最大项与最小项;若不存在,说明理由;
(Ⅲ)若1<a1<2,试证明:1<an+1<an<2.
题型:解答题难度:中档来源:不详

答案

f(x)=2-class="stub"1
x
,则an=2-class="stub"1
an-1
(n≥2,nÎN*).
(Ⅰ)bn=class="stub"1
an-1
=class="stub"1
2-class="stub"1
an-1
-1
=
an-1
an-1-1
bn-1=class="stub"1
an-1-1

bn-bn-1=
an-1
an-1-1
-class="stub"1
an-1-1
=1 (n≥2,n∈N*)

∴数列{bn}是等差数列.

(Ⅱ)由(Ⅰ)知,数列{bn}是等差数列,首项b1=class="stub"1
a1-1
=-class="stub"5
2
,公差为1,
则其通项公式bn=-class="stub"5
2
+(n-1)•1=n-class="stub"7
2

bn=class="stub"1
an-1
an=1+class="stub"1
bn
=1+class="stub"1
n-class="stub"7
2

an=1+class="stub"2
2n-7

考查函数g(x)=1+class="stub"2
2x-7

g′(x)=-class="stub"4
(2x-7)2
<0

则函数g(x)=1+class="stub"2
2x-7
在区间(-∞,class="stub"7
2
)
(class="stub"7
2
,+∞)
上为减函数.
∴当x<class="stub"7
2
时,g(x)=1+class="stub"2
2x-7
<1

且在(-∞,class="stub"7
2
)
上递减,故当n=3时,an取最小值
class="stub"m-n
m
<2(lnm-lnn)

x>class="stub"7
2
时,g(x)=1+class="stub"2
2x-7
>1

且在(class="stub"7
2
,+∞)
上递减,故当n=4时,an取最大值class="stub"m-n
lnm-lnn
<2m
.故存在.

(Ⅲ)先用数学归纳法证明1<an<2,再证明an+1<an.
①当n=1时,1<a1<2成立,
②假设n=k时命题成立,即1<ak<2,
则当n=k+1时,class="stub"1
2
<class="stub"1
ak
<1
ak+1=2-class="stub"1
ak
∈(1,class="stub"3
2
)
,则1<ak+1<2,故当n=k+1时也成立.
综合①②有,命题对任意nÎN*时成立,即1<an<2.下证an+1<an.
an+1-an=2-class="stub"1
an
-an=2-(an+class="stub"1
an
)<2-2
an•class="stub"1
an
=0

∴an+1<an.
综上所述:1<an+1<an<2.

更多内容推荐