观察下面各式规律:12+(1×2)2+22=(1×2+1)222+(2×3)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2…(1)请写出第2004行式子.______(2)请写出

题目简介

观察下面各式规律:12+(1×2)2+22=(1×2+1)222+(2×3)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2…(1)请写出第2004行式子.______(2)请写出

题目详情

观察下面各式规律:
12+(1×2)2+22=(1×2+1)2
22+(2×3)2+32=(2×3+1)2
32+(3×4)2+42=(3×4+1)2

(1)请写出第2004行式子.______
(2)请写出第n行式子.______.
题型:解答题难度:中档来源:不详

答案

(1)由观察知:第2004行式子为20042+(2004×2005)2+20052=(2004×2005+1)2.

(2)第n行式子为n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2.
理由如下:
n2+[n(n+1)]2+(n+1)2,
=n2+n2(n+1)2+(n+1)2,
=n2[1+(n+1)2]+(n+1)2,
=n2(n2+2n+2)+(n+1)2,
=n4+2n2(n+1)+(n+1)2,
=[n2+(n+1)]2,
=[n(n+1)+1]2.

更多内容推荐