若数列{an}的前n项和为Sn,a1=1,Sn+an=2n(n∈N*).(1)证明:数列{an-2}为等比数列;(2)求数列{Sn}的前n项和Tn.-高二数学

题目简介

若数列{an}的前n项和为Sn,a1=1,Sn+an=2n(n∈N*).(1)证明:数列{an-2}为等比数列;(2)求数列{Sn}的前n项和Tn.-高二数学

题目详情

若数列{an}的前n项和为Sn,a1=1,Sn+an=2n(n∈N*)
(1)证明:数列{an-2}为等比数列;
(2)求数列{Sn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(1)∵Sn+an=2n,①
∴Sn-1+an-1=2(n-1),n≥2②
由①-②得,2an-an-1=2,n≥2,∴2(an-2)=an-1-2,n≥2,
∵a1-2=-1,
∴数列{an-2}以-1为首项,class="stub"1
2
为公比的等比数列.
(2)由(1)得an-2=-(class="stub"1
2
)n-1
,∴an=2-(class="stub"1
2
)n-1

∵Sn+an=2n,∴Sn=2n-an=2n-2+(class="stub"1
2
)n-1

Tn=[0+(class="stub"1
2
)0]+[2+(class="stub"1
2
)]+…+[2n-2+(class="stub"1
2
)n-1]

=[0+2+…+(2n-2)]+[(class="stub"1
2
)0+(class="stub"1
2
)+…+(class="stub"1
2
)n-1]

=
n(2n-2)
2
+
1-(class="stub"1
2
)
n
1-class="stub"1
2
=n2-n+2-(class="stub"1
2
)n-1

更多内容推荐