已知等差数列{an}前三项的和为-3,前三项的积为8。(1)求等差数列{an}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和。-高三数学

题目简介

已知等差数列{an}前三项的和为-3,前三项的积为8。(1)求等差数列{an}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和。-高三数学

题目详情

已知等差数列{an}前三项的和为-3,前三项的积为8。
(1)求等差数列{an}的通项公式;
(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和。
题型:解答题难度:中档来源:高考真题

答案

解:(1)设等差数列的公差为d,则a2=a1+d,a3=a1+2d
由题意可得,
解得
由等差数列的通项公式可得,an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7。
(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2不成等比
当an=3n-7时,a2,a3,a1分别为-1,2,-4成等比数列,满足条件
故|an|=|3n-7|=
设数列{|an|}的前n项和为Sn
当n=1时,S1=4,
当n=2时,S2=5
当n≥3时,Sn=|a1|+|a2|+…+|an|=5+(3×3-7)+(3×4-7)+…+(3n-7)
=5+=
当n=2时,满足此式
综上可得

更多内容推荐