已知等差数列{an}前三项的和为-3,前三项的积为8。(1)求等差数列{an}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和。-高三数学
解:(1)设等差数列的公差为d,则a2=a1+d,a3=a1+2d由题意可得,解得或由等差数列的通项公式可得,an=2-3(n-1)=-3n+5或an=-4+3(n-1)=3n-7。(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2不成等比当an=3n-7时,a2,a3,a1分别为-1,2,-4成等比数列,满足条件故|an|=|3n-7|=设数列{|an|}的前n项和为Sn当n=1时,S1=4,当n=2时,S2=5当n≥3时,Sn=|a1|+|a2|+…+|an|=5+(3×3-7)+(3×4-7)+…+(3n-7)=5+=,当n=2时,满足此式综上可得。
题目简介
已知等差数列{an}前三项的和为-3,前三项的积为8。(1)求等差数列{an}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和。-高三数学
题目详情
(1)求等差数列{an}的通项公式;
(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和。
答案
解:(1)设等差数列的公差为d,则a2=a1+d,a3=a1+2d![]()
或
由![]()
=
,
。
由题意可得,
解得
等差数列的通项公式可得,an=2-3(n-1)=-3n+5
或an=-4+3(n-1)=3n-7。
(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2不成等比
当an=3n-7时,a2,a3,a1分别为-1,2,-4成等比数列,满足条件
故|an|=|3n-7|=
设数列{|an|}的前n项和为Sn
当n=1时,S1=4,当
n=2时,S2=5
当n≥3时,Sn=|a1|+|a2|+…+|an|
=5+(3×3-7)+(3×4-7)+…+(3n-7)
=5+
当n=2时,满足此式综上可得