已知函数f(x)=ax+x-2x+1(a>1),求证:(1)函数f(x)在(-1,+∞)上为增函数;(2)方程f(x)=0没有负数根.-数学

题目简介

已知函数f(x)=ax+x-2x+1(a>1),求证:(1)函数f(x)在(-1,+∞)上为增函数;(2)方程f(x)=0没有负数根.-数学

题目详情

已知函数f(x)=ax+
x-2
x+1
(a>1),求证:
(1)函数f(x)在(-1,+∞)上为增函数;
(2)方程f(x)=0没有负数根.
题型:解答题难度:中档来源:东城区二模

答案

证明:(1)设-1<x1<x2,
f(x1)-f(x2)=ax1+
x1-2
x1+1
-ax2-
x2-2
x2+1

=ax1-ax2+
x1-2
x1+1
-
x2-2
x2+1
=ax1-ax2+
3(x1-x2)
(x1+1)(x2+1)

∵-1<x1<x2,∴x1+1>0,x2+1>0,x1-x2<0,
3(x1-x2)
(x1+1)(x2+1)
<0

∵-1<x1<x2,且a>1,∴ax1ax2,∴ax1-ax2<0
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函数f(x)在(-1,+∞)上为增函数;
(2)假设x0是方程f(x)=0的负数根,且x0≠-1,则ax0+
x0-2
x0+1
=0

ax0=
2-x0
x0+1
=
3-(x0+1)
x0+1
=class="stub"3
x0+1
-1
,①
当-1<x0<0时,0<x0+1<1,∴class="stub"3
x0+1
>3

class="stub"3
x0+1
-1>2
,而由a>1知ax0<1.∴①式不成立;
当x0<-1时,x0+1<0,∴class="stub"3
x0+1
<0
,∴class="stub"3
x0+1
-1<-1
,而ax0>0
∴①式不成立.综上所述,方程f(x)=0没有负数根.

更多内容推荐