如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱PB,PC上,且BC∥平面ADE。(Ⅰ)求证:DE⊥平面PAC;(Ⅱ)当二面角A-DE-P为直二面角时,求多

题目简介

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱PB,PC上,且BC∥平面ADE。(Ⅰ)求证:DE⊥平面PAC;(Ⅱ)当二面角A-DE-P为直二面角时,求多

题目详情

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°, AP=AC, 点D,E分别在棱PB,PC上,且BC∥平面ADE。
(Ⅰ)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比。
题型:解答题难度:中档来源:0119 月考题

答案

(Ⅰ)证明:BC∥平面ADE,BC平面PBC,平面PBC∩平面ADE=DE,
∴BC∥ED,
∵PA⊥底面ABC,BC底面ABC,
∴PA⊥BC,
又∠BCA=90°,
∴AC⊥BC,
∵PA∩AC=A,
∴BC⊥平面PAC,
∴DE⊥平面PAC。
(Ⅱ)解:由(Ⅰ)知,DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,
∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,
∴∠AEP=90°,即AE⊥PC, 
∵AP=AC,
∴E是PC的中点,ED是PBC的中位线,

更多内容推荐