如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2,AC=1,PA=1,求三棱锥P-ABC的体积.-高二数学

题目简介

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2,AC=1,PA=1,求三棱锥P-ABC的体积.-高二数学

题目详情

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求三棱锥P-ABC的体积.
题型:解答题难度:中档来源:不详

答案

证明:(1)由AB是圆的直径,得AC⊥BC,
由PA⊥平面ABC,BC⊂平面ABC,得PA⊥BC.
又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,
所以BC⊥平面PAC.
因为BC⊂平面PBC,
所以平面PBC⊥平面PAC.
(2)由AB=2,AC=1,∠ACB=90°,得CB=
3

所以S△ABC=class="stub"1
2
×1×
3
=
3
2

三棱锥的高是PA=1,
所以VP-ABC=class="stub"1
3
×1×
3
2
=
3
6

更多内容推荐