已知函数f(x)=2x+ax,且f(1)=1.(1)求实数a的值,并写出f(x)的解析式;(2)判断函数f(x)的奇偶性,并加以证明;(3)判断函数f(x)在(1,+∞)上的单调性,并加以证明.-数学

题目简介

已知函数f(x)=2x+ax,且f(1)=1.(1)求实数a的值,并写出f(x)的解析式;(2)判断函数f(x)的奇偶性,并加以证明;(3)判断函数f(x)在(1,+∞)上的单调性,并加以证明.-数学

题目详情

已知函数f(x)=2x+
a
x
,且f(1)=1.
(1)求实数a的值,并写出f(x)的解析式;
(2)判断函数f(x)的奇偶性,并加以证明;
(3)判断函数f(x)在(1,+∞)上的单调性,并加以证明.
题型:解答题难度:中档来源:不详

答案

(1)由f(1)=1得,2+a=1,解得a=-1,
所以f(x)=2x-class="stub"1
x

(2)函数f(x)为奇函数,证明如下:
函数定义域为(-∞,0)∪(0,+∞),
且f(-x)=-2x+class="stub"1
x
=-(2x-class="stub"1
x
)=-f(x),
所以f(x)为奇函数;
(3)f(x)在(1,+∞)上单调递增,证明如下:
因为f′(x)=2+class="stub"1
x2
>0,
所以f(x)在(1,+∞)上单调递增.

更多内容推荐