优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.(Ⅰ)求证AM//平面BDE;(Ⅱ)求二面角A-DF-B的大小;(Ⅲ)试在线段AC上确定一点P,使得PF
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.(Ⅰ)求证AM//平面BDE;(Ⅱ)求二面角A-DF-B的大小;(Ⅲ)试在线段AC上确定一点P,使得PF
题目简介
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.(Ⅰ)求证AM//平面BDE;(Ⅱ)求二面角A-DF-B的大小;(Ⅲ)试在线段AC上确定一点P,使得PF
题目详情
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
,AF=1,M是线段EF的中点.
(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.
题型:解答题
难度:偏易
来源:不详
答案
(1)对于线面平行的证明,主要是分析借助于中位线来得到AM∥OE
(2)60º(3)P是AC的中点
试题分析:解法一: (1)记AC与BD的交点为O,连接OE, ∵O、M分别是AC、EF的中点, ACEF是矩形,∴四边形AOEM是平行四边形,
∴AM∥OE.∵
平面BDE,
平面BDE,∴AM∥平面BDE.……4分
(2)在平面AFD中过A作AS⊥DF于S,连结BS,∵AB⊥AF, AB⊥AD,
∴AB⊥平面ADF,∴AS是BS在平面ADF上的射影,
由三垂线定理得BS⊥DF.∴∠BSA是二面角A—DF—B的平面角.
在RtΔASB中,
∴
∴二面角A—DF—B的大小为60º.……8分
(3)设CP=t(0≤t≤2),作PQ⊥AB于Q,则PQ∥AD,
∵PQ⊥AB,PQ⊥AF,
,∴PQ⊥平面ABF,
平面ABF,∴PQ⊥QF.在RtΔPQF中,∠FPQ=60º,PF=2PQ.
∵ΔPAQ为等腰直角三角形,∴
又∵ΔPAF为直角三
角形,∴
,∴
所以t=1或t=3(舍去),即点P是AC的中点.……12分
解法二: (1)建立空间直角坐标系.
设
,连接NE, 则点N、E的坐标分别是(
、(0,0,1),
∴
, 又点A、M的坐标分别是
,(
∴
=(
∴
且NE与AM不共线,∴NE∥AM.又∵
平面BDE,
平面BDE,∴AM∥平面BDE.
(2)∵AF⊥AB,AB⊥AD,AF
∴AB⊥平面ADF.
∴
为平面DAF的法向量.
∵
=(
·
=0,
∴
=(
·
=0得
,
,∴NE为平面BDF的法向量.
∴cos<
=
∴AB与NE的夹角是60º.即所求二面角A—DF—B的大小是60º.
(3)设P(t,t,0)(0≤t≤
)得
∴
=(0,
, 0)
又∵PF和BC所成的角是60º.∴
解得
或
(舍去),即点P是AC的中点.
点评:解决的关键是根据线面平行的判定定理,以及空间的法向量来求解二面角的平面角的大小,属于中档题。
上一篇 :
如图所示,正方体的棱长为1,O是平
下一篇 :
正四棱锥P-ABCD的所有棱长都相
搜索答案
更多内容推荐
如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.(1)求证:平面EFGH;(2)求证:四边形EFGH是矩形.-高二数学
(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。(Ⅰ)求证:B1C//平面A1BD;(Ⅰ)求二面角A—A1B—D的余弦值。-高三数学
已知三个平面,若,且相交但不垂直,分别为内的直线,则()A.B.C.D.-高三数学
如图,在三棱锥P-ABC中,点P在平面ABC上的射影D是AC的中点.BC="2AC=8,AB"=(I)证明:平面PBC丄平面PAC(II)若PD=,求二面角A-PB-C的平面角的余
如图,在棱长为1的正方体中.⑴求异面直线与所成的角;⑵求证:平面平面.-高一数学
如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中正确的是(把正确的答案都填上)(1)AC⊥SB(2)AB∥平面SCD(3)SA与平面SBD所成的角等于SC与平面SBD所成的角(4
给出下列命题:①如果,是两条直线,且//,那么平行于经过的任何平面;②如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面;③若直线,是异面直线,直线,是异面直线,-高二数学
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB,AB=2EF=2AD=4,.(Ⅰ)求证:BFAD;(Ⅱ)求直线BD与平面BCF所成
(本小题满分12分)如图,在三棱锥ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,O为AC中点。(1)求直线A1C与平面A1AB所成角的正弦值;
如图,正四棱锥的所有棱长相等,E为PC的中点,则异面直线BE与PA所成角的余弦值是()A.B.C.D.-高二数学
(本小题13分)如图1,在三棱锥P—ABC中,平面ABC,,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。(1)证明:平面PBC;(2)求三棱锥D—ABC的体积;(3)在的平分线上确定
如图,已知正方形的边长为1,平面,平面,为边上的动点。(1)证明:平面;(2)试探究点的位置,使平面平面。-高三数学
在空间直角坐标系中,点A(2,-1,1)关于平面xoy和z轴的对称点分别为A1和A2,则|A1A2|=()A.2B.4C.25D.26-数学
在三棱锥A=BCD中,AC⊥底面BCD,BD⊥DC,BD=DC,AC=a,∠ABC=30°,则D到平面ABC的距离是()A.a2B.22aC.32aD.62a-数学
已知一颗粒子等可能地落入如图所示的四边形ABCD内的任意位置,如果通过大量的实验发现粒子落入△BCD内的频率稳定在附近,那么点A和点C到直线BD的距离之比约为-高二数学
已知二面角α-l-β为,动点P.Q分别在面α.β内,P到β的距离为,Q到α的距离为,则P.Q两点之间距离的最小值为;-高三数学
设、是两条不同的直线,是一个平面,则下列命题正确的是()A.若,,则B.若,,则C.若,,则D.若,,则-高二数学
如图,在平行四边ABCD中,,,若将其沿BD折成直二面角A-BD-C,则三棱锥A—BCD的外接球的体积为_______.-高三数学
已知两个不同的平面、,能判定//的条件是()A.、分别平行于直线B.、分别垂直于直线C.、分别垂直于平面D.内有两条直线分别平行于-高二数学
(12分)如图,在直三棱柱中,,,为的中点.(1)求证:⊥平面;(2)设是上一点,试确定的位置,使平面⊥平面,并说明理由.-高三数学
如图,已知六棱锥P—ABCDEF的底面是正六边形,平面ABC,,给出下列结论:①;②平面平面PBC;③直线平面PAE;④;⑤直线PD与平面PAB所成角的余弦值为。其中正确的有(把所有正确的序-高二数学
(本小题满分12分)在边长为2的正方体中,E是BC的中点,F是的中点(1)求证:CF∥平面(2)求二面角的平面角的余弦值.-高二数学
(本小题12分)如图,在中,为边上的高,,沿将翻折,使得得几何体(Ⅰ)求证:;(Ⅱ)求点D到面ABC的距离。-高二数学
三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于()A.B.C.D.-高二数学
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。(Ⅰ)证明:面面;(Ⅱ)求与所成的角的余弦值;(Ⅲ)求面与面所成二面角的余弦值。-高二数学
(12分)如图所示,以AB=4cm,BC=3cm的长方形ABCD为底面的长方体被平面斜着截断的几何体,EFGH是它的截面.当AE=5cm,BF=8cm,CG=12cm时,试回答下列问题:(1)求DH的
正三棱锥的底面边长为2,侧面均为直角三角形,则此棱锥的体积()A.B.C.D.-高一数学
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起,使得△ABD与△ABC成直二面角,如图二,在二面角中.(1)求证:BD⊥AC;(2)求D、C之间的距离;(
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB,AB=2EF=2AD=4,.(Ⅰ)求多面体EF-ABCD的体积;(Ⅱ)求直线BD与
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形(1)求证:;(2)求证:;(3)设为中点,在边上找一点,使平面,并求的值.-高三数学
(本小题满分12分)如图,四棱锥中,底面是边长为2的正方形,,且,为中点.(1)求证:平面;(2)求二面角的余弦值.-高二数学
(本小题满分l2分)如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.(1)求证:EG面ABF;(2)若AF=AB,求二
如图,在四棱锥中,平面,底面是菱形,,.(Ⅰ)求证:;(Ⅱ)若,求二面角的余弦值.-高三数学
直线m、n和平面、.下列四个命题中,①若m∥,n∥,则m∥n;②若m,n,m∥,n∥,则∥;③若,m,则m;④若,m,m,则m∥,其中正确命题的个数是()A.0B.1C.2D.3-高二数学
.在三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=,且AC=BC=5,SB=,如图(12分)(1)求侧面sBC与底面ABC所成二面角的大小(2)求三棱锥的体积-高二数学
正方体中,下列结论错误的是A.∥平面B.平面C.D.异面直线与所成的角是45º-高二数学
(本小题满分12分,(1)小问5分,(2)小分7分.)如图所示,正三棱柱的底面边长与侧棱长均为,为中点.(1)求证:∥平面;(2)求直线与平面所成的角的正弦值.-高三数学
(本题满分12分)本题共有2个小题,第1小题满分8分,第2小题满分4分.在正四棱柱中,已知底面的边长为2,点P是的中点,直线AP与平面成角.(文)(1)求的长;(2)求异面直线和AP所-高三数学
已知两个不同的平面α,和两条不重合的直线m,n,则下列四种说法正确的为()A.若m∥n,nα,则m∥αB.若m⊥n,m⊥α,则n∥αC.若mα,n,α∥,则m,n为异面直线D.若α⊥,m⊥α,n⊥,则
如图所示:一吊灯的下圆环直径为4m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即)为2m,在圆环上设置三个等分点A1,A2,A3。点C为上一点(不包含-高三数学
(本小题满分12分)已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。(Ⅰ)求四棱锥P-ABCD的体积;(Ⅱ)当点E在何位置时,BD⊥AE?证明你的结论;(Ⅲ)若点E为PC的中点,求二面角D
选修4-1:几何证明选讲如图,在等腰梯形ABCD中,对角线AC⊥BD,且相交于点O,E是AB边的中点,EO的延长线交CD于F.(1)求证:EF⊥CD;(2)若∠ABD=30°,求证-高三数学
如图,⊥平面,=90°,,点在上,点E在BC上的射影为F,且.(1)求证:;(2)若二面角的大小为45°,求的值.-高二数学
如图,在四棱锥中,底面ABCD是一直角梯形,,,,且PA=AD=DC=AB=1.(1)证明:平面平面(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT(3)求异面直线与所成角的余弦
如图所示的三棱锥A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若点P为△ABC内的动点满足直线DP与平面ABC所成角的正切值为2,则点P在△ABC内所成的轨
△一边BC在平面内,顶点A在平面外,已知,三角形所在平面与所成的二面角为,则直线与所成角的正弦值为()A.B.C.D.-高二数学
(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.(Ⅰ)求证:PB平面
(本小题满分10分)如图,在棱长为3的正方体中,.⑴求两条异面直线与所成角的余弦值;⑵求平面与平面所成的锐二面角的余弦值.-高二数学
已知经过同一点的N个平面,任意三个平面不经过同一条直线.若这个平面将空间分成个部分,则,.-高三数学
(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求(1)异面直线与所成-高三数学
返回顶部
题目简介
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.(Ⅰ)求证AM//平面BDE;(Ⅱ)求二面角A-DF-B的大小;(Ⅲ)试在线段AC上确定一点P,使得PF
题目详情
(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.
答案
(2)60º(3)P是AC的中点
试题分析:解法一: (1)记AC与BD的交点为O,连接OE, ∵O、M分别是AC、EF的中点, ACEF是矩形,∴四边形AOEM是平行四边形,
∴AM∥OE.∵
(2)在平面AFD中过A作AS⊥DF于S,连结BS,∵AB⊥AF, AB⊥AD,
由三垂线定理得BS⊥DF.∴∠BSA是二面角A—DF—B的平面角.
在RtΔASB中,
∴
(3)设CP=t(0≤t≤2),作PQ⊥AB于Q,则PQ∥AD,
∵PQ⊥AB,PQ⊥AF,
∵ΔPAQ为等腰直角三角形,∴
角形,∴
解法二: (1)建立空间直角坐标系.
设
∴
∴
(2)∵AF⊥AB,AB⊥AD,AF
∴
∵
∴
∴cos<
(3)设P(t,t,0)(0≤t≤
又∵PF和BC所成的角是60º.∴
解得
点评:解决的关键是根据线面平行的判定定理,以及空间的法向量来求解二面角的平面角的大小,属于中档题。