优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,⊥平面,=90°,,点在上,点E在BC上的射影为F,且.(1)求证:;(2)若二面角的大小为45°,求的值.-高二数学
如图,⊥平面,=90°,,点在上,点E在BC上的射影为F,且.(1)求证:;(2)若二面角的大小为45°,求的值.-高二数学
题目简介
如图,⊥平面,=90°,,点在上,点E在BC上的射影为F,且.(1)求证:;(2)若二面角的大小为45°,求的值.-高二数学
题目详情
如图,
⊥平面
,
=90°,
,点
在
上,点E在BC上的射影为F,且
.
(1)求证:
;
(2)若二面角
的大小为45°,求
的值.
题型:解答题
难度:偏易
来源:不详
答案
(1)注意运用
,
,
,确定
,
通过
∽
,得到
; 证出
;
(2)
.
试题分析:
解:(1)∵DC⊥平面ABC, ∴DC⊥BC
∵
,∴EF∥CD 1′
又∵
,
,所以
, 2′
∴
,
,
,∴
,
∴
∽
,∴
,即
; 5′
∵
,又
,于是
, 7′
(2)过F作
于G点,连GC
由
知
,可得
, 9′
所以
,所以
为F-AE-C的平面角,即
=45° 11′
设AC=1,则
,
,则在RT△AFE中
,
在RT△CFG中
=45°,则GF=CF,即
得到
. 14′
(注:若用其他正确的方法请酌情给分)
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。“几何法”的应用,要特别注意空间问题向平面问题转化。
上一篇 :
选修4-1:几何证明选讲如图,在等
下一篇 :
如图,在四棱锥中,底面ABCD是一直
搜索答案
更多内容推荐
如图所示的三棱锥A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若点P为△ABC内的动点满足直线DP与平面ABC所成角的正切值为2,则点P在△ABC内所成的轨
△一边BC在平面内,顶点A在平面外,已知,三角形所在平面与所成的二面角为,则直线与所成角的正弦值为()A.B.C.D.-高二数学
(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.(Ⅰ)求证:PB平面
(本小题满分10分)如图,在棱长为3的正方体中,.⑴求两条异面直线与所成角的余弦值;⑵求平面与平面所成的锐二面角的余弦值.-高二数学
已知经过同一点的N个平面,任意三个平面不经过同一条直线.若这个平面将空间分成个部分,则,.-高三数学
(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求(1)异面直线与所成-高三数学
如图,已知两个正方形ABCD和DCEF不在同一平面内,且平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点。(1)求直线MN与平面ABCD所成角的正弦值;(2)求异面直线ME与BN所成角的余弦值
(本小题满分10分)已知:如图,中,,,是角平分线。求证:。-高三数学
在平行六面体ABCD-A′B′C′D′中,AB=4,AD=3,AA′=5,∠BAD=90°,∠BAA′=∠DAA′=60°,则对角线AC′的长度为()A.6B.65C.8D.85-数学
(本小题满分12分)如图所示,已知六棱锥的底面是正六边形,平面,是的中点。(Ⅰ)求证:平面//平面;(Ⅱ)设,当二面角的大小为时,求的值。-高三数学
设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是()A.若mα,nβ,m∥n,则α∥βB.若n⊥α,n⊥β,m⊥β,则m⊥αC.若m∥α,n∥β,m⊥n,则α⊥βD.若α⊥β,n⊥β,
(本小题12分)如图,在多面体ABCDEF中,底面ABCD是平行四边形,AB=2EF,EF∥AB,,H为BC的中点.求证:FH∥平面EDB.-高二数学
如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC.(1)求证:平面AB1C1⊥平面AC1;(2)若AB1⊥A1C,求线段AC与AA1长度之比;(3)若D是棱CC1的中点,问在棱AB上是否存在一点
(本小题满分12分)在四棱柱中,底面是直角梯形,AB∥CD,∠ABC=,AB=PB=PC=BC=2CD=2,平面PBC⊥平面ABCD(1)求证:AB⊥平面PBC(2)求三棱锥C-ADP的体积(3)在棱
(本题满分14分)如图,在底面是直角梯形的四棱锥S-ABCD中,(1)求四棱锥S-ABCD的体积;(2)求证:-高二数学
如图,已知四棱锥的底面为等腰梯形,∥,,垂足为,是四棱锥的高。(Ⅰ)证明:平面平面;(Ⅱ)若,60°,求四棱锥的体积。-高三数学
(本小题满分12分)如图,在四边形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=,求AB的长.-高二数学
(本小题满分12分)在三棱锥中,是边长为4的正三角形,,,、分别是、的中点;(1)证明:平面平面;(2)求直线与平面所成角的正弦值。-高三数学
如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(1)线段的中点为,线段的中点为,求证:;(2)求直线与平面所成角的正切值.-高三数学
(本小题满分14分)在四棱锥中,//,,,平面,.(Ⅰ)设平面平面,求证://;(Ⅱ)求证:平面;(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.-高三数学
已知两个不重合的平面,给定以下条件:①内不共线的三点到的距离相等;②是内的两条直线,且;③是两条异面直线,且;其中可以判定的是()A.①B.②C.①③D.③-高三数学
(本题15分)如图,在四棱锥中,底面,,,,,是的中点。(Ⅰ)证明:;(Ⅱ)证明:平面;(Ⅲ)求二面角的正切值.-高三数学
若两直线相交,且∥平面,则与的位置关系是________.-高二数学
如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与
如图,在四边形中,对角线于,,为的重心,过点的直线分别交于且‖,沿将折起,沿将折起,正好重合于.(Ⅰ)求证:平面平面;(Ⅱ)求平面与平面夹角的大小.-高三数学
(本小题满分12分)在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1-高一数学
(本小题满分12分)如图,五面体中,,底面ABC是正三角形,=2.四边形是矩形,二面角为直二面角,D为中点。(I)证明:平面;(II)求二面角的余弦值.-高三数学
(本题满分12分)在如图的多面体中,⊥平面,,,,,,,是的中点.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)求二面角的余弦值.-高三数学
已知在四棱锥中,,,,分别是的中点.(Ⅰ)求证;(Ⅱ)求证;(Ⅲ)若,求二面角的大小.-高三数学
(本题满分12分)如图,平面⊥平面,其中为矩形,为梯形,∥,⊥,==2=2,为中点.(Ⅰ)证明;(Ⅱ)若二面角的平面角的余弦值为,求的长.-高三数学
(本题满分10分)如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,⑴求证:A1C⊥平面BDE;⑵求A1B与
在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D、E、F分别是棱AB、BC、CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为()A.B.C.D.-高二数学
(本小题满分12分)如图,矩形所在平面与平面垂直,,且,为上的动点.(Ⅰ)当为的中点时,求证:;(Ⅱ)若,在线段上是否存在点E,使得二面角的大小为.若存在,确定点E的位置,若-高二数学
下列结论中正确的是()A.平行于平面内两条直线的平面,一定平行于这个平面B.一条直线平行于一个平面内的无数条直线,则这条直线与该平面平行C.两个平面分别与第三个平面相交,-高二数学
如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的
设m、n是两条不同的直线,是两个不同的平面,则下列命题中正确的是A.若m∥n,m,则n∥;B.若⊥β,m∥,则m⊥β;C.若⊥β,m⊥β,则m∥;D.若m⊥n,m⊥,n⊥β,则⊥β-高三数学
(本小题满分12分)如图:直三棱柱ABC—中,,,D为AB中点。(1)求证:;(2)求证:∥平面;(3)求C1到平面A1CD的距离。-高三数学
(12分)如图,在直三棱柱中,,点是的中点.求证:(1);(2)平面.-高二数学
平面上有四点,连结其中的两点的一切直线中的任何两条直线不重合、不平行、不垂直,从每一点出发,向其他三点作成的一切直线作垂线,则这些垂线的交点个数最多为A.66B.60C.5-高三数学
设为两条直线,为两个平面,下列四个命题中,正确的命题是()A.若与所成的角相等,则B.若,,,则C.若,,,则D.若,,,则-高一数学
(本小题满分12分)已知:如图,在四棱锥中,四边形为正方形,,且,为中点.(1)证明://平面;(2)证明:平面平面;(3)求二面角的正弦值.-高二数学
如图,已知长方体底面为正方形,为线段的中点,为线段的中点.(Ⅰ)求证:∥平面;(Ⅱ)设的中点,当的比值为多少时,并说明理由.-高二数学
如图:正方体中,与所成的角为()A.B.C.D.-高二数学
(本题12分)如图,平面,点在上,∥,四边形为直角梯形,,,(1)求证:平面;(2)求二面角的余弦值;(3)直线上是否存在点,使∥平面,若存在,求出点;若不存在,说明理由。-高二数学
如图,四边形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,PB=AB=2MA.求证:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.-高三数学
已知直线a和平面,,∩=l,a,a,a在,内的射影分别为直线b和c,则b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交﹑平行或异面-高三数学
(本小题满分13分)如图,正三棱柱中,D是BC的中点,(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积.-高三数学
(本小题满分14分)如图,在四棱锥中,∥,,,⊥,⊥,为的中点.求证:(1)∥平面;(2)⊥平面.-高三数学
如果一条直线和平面内的一条直线平行,那么直线和平面的关系是.-高一数学
在如图的直三棱柱中,,点是的中点.(1)求证:∥平面;(2)求异面直线与所成的角的余弦值;(3)求直线与平面所成角的正弦值;-高二数学
返回顶部
题目简介
如图,⊥平面,=90°,,点在上,点E在BC上的射影为F,且.(1)求证:;(2)若二面角的大小为45°,求的值.-高二数学
题目详情
(1)求证:
(2)若二面角
答案
(1)注意运用
通过
(2)
试题分析:
解:(1)∵DC⊥平面ABC, ∴DC⊥BC
∵
又∵
∴
∴
∵
(2)过F作
由
所以
设AC=1,则
在RT△CFG中
(注:若用其他正确的方法请酌情给分)
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。“几何法”的应用,要特别注意空间问题向平面问题转化。