已知函数f(x)=2-xx-1+aln(x-1)(a∈R).(1)若函数f(x)在区间[2,+∞)上是单调递增函数,试求实数a的取值范围;(2)当a=2时,求证:1-1x-1<2ln(x-1)<2x-

题目简介

已知函数f(x)=2-xx-1+aln(x-1)(a∈R).(1)若函数f(x)在区间[2,+∞)上是单调递增函数,试求实数a的取值范围;(2)当a=2时,求证:1-1x-1<2ln(x-1)<2x-

题目详情

已知函数f(x)=
2-x
x-1
+aln(x-1)
(a∈R).
(1)若函数f(x)在区间[2,+∞)上是单调递增函数,试求实数a的取值范围;
(2)当a=2时,求证:1-
1
x-1
<2ln(x-1)<2x-4
(x>2);
(3)求证:
1
4
+
1
6
+…+
1
2n
<lnn<1+
1
2
+…+
1
n-1
(n∈N*且n≥2).
题型:解答题难度:中档来源:不详

答案

(1)因为f (x)=
a(x-1)-1
(x-1)2
,若函数f(x)在区间[2,+∞)上是单调递增函数,则f′(x)≥0恒成立,即a≥class="stub"1
x-1
恒成立,所以a≥(class="stub"1
x-1
)max

又x∈[2,+∞),则0<class="stub"1
x-1
≤1
,所以a≥1.
(2)当a=2时,由(Ⅰ)知函数f(x)=class="stub"2-x
x-1
+2ln(x-1)
在[2,+∞)上是增函数,
所以当x>2时,f(x)>f(2),即class="stub"2-x
x-1
+2ln(x-1)>0
,则2ln(x-1)>class="stub"x-2
x-1
=1-class="stub"1
x-1

令g(x)=2x-4-2ln(x-1),则有g(x)=2-class="stub"2
x-1
=
2(x-2)
x-1

当x∈(2,+∞)时,有g′(x)>0,
因此g(x)=2x-4-2ln(x-1)在(2,+∞)上是增函数,所以有g(x)>g(2)=0,
即可得到2x-4>2ln(x-1).
综上有1-class="stub"1
x-1
<2ln(x-1)<2x-4
(x>2).
(3)在(2)的结论中令x-1=class="stub"t+1
t
,则class="stub"1
t+1
<2lnclass="stub"t+1
t
<2•class="stub"1
t

取t=1,2,…,n-1,(n∈N*,n≥2)时,得到(n-1)个不等式,将所得各不等式相加得,class="stub"1
2
+class="stub"1
3
+…+class="stub"1
n
<2(lnclass="stub"2
1
+lnclass="stub"3
2
+…+lnclass="stub"n
n-1
)<2(1+class="stub"1
2
+…+class="stub"1
n-1
)

所以class="stub"1
2
+class="stub"1
3
+…+class="stub"1
n
<2lnn<2(1+class="stub"1
2
+…+class="stub"1
n-1
)

class="stub"1
4
+class="stub"1
6
+…+class="stub"1
2n
<lnn<1+class="stub"1
2
+…+class="stub"1
n-1
(n∈N*且n≥2)

更多内容推荐