已知函数f(x)=23sin2x-sin(2x-π3)(Ⅰ)求函数f(x)的最小正周期及单调增区间;(Ⅱ)设α∈(0,π),f(α2)=12+3,求sinα的值;(Ⅲ)若x∈[-π2,0],函数f(x

题目简介

已知函数f(x)=23sin2x-sin(2x-π3)(Ⅰ)求函数f(x)的最小正周期及单调增区间;(Ⅱ)设α∈(0,π),f(α2)=12+3,求sinα的值;(Ⅲ)若x∈[-π2,0],函数f(x

题目详情

已知函数f(x)=2
3
sin2x-sin(2x-
π
3
)

(Ⅰ) 求函数f(x)的最小正周期及单调增区间;
(Ⅱ) 设α∈(0,π),f(
α
2
)=
1
2
+
3
,求sinα的值;
(Ⅲ)若x∈[-
π
2
,0]
,函数f(x)的最大值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵f(x)=
3
-class="stub"1
2
sin2x-
3
2
cos2x.
=
3
-sin(2x+class="stub"π
3
)

∴函数f(x)的最小正周期为T=class="stub"2π
2

单调增区间满足:class="stub"π
2
+2kπ≤2x+class="stub"π
3
≤π+2kπ
k∈Z
即单调增区间为:[kπ+class="stub"π
12
,kπ+class="stub"π
3
]
k∈Z
(Ⅱ)∵f(x)=
3
-sin(2x+class="stub"π
3
)

∴f(class="stub"α
2
)=class="stub"1
2
+
3

可化为:
3
-sin(α+class="stub"π
3
)
=class="stub"1
2
+
3

sin(α+class="stub"π
3
)=-class="stub"1
2

∵α∈(0,π)∴α+class="stub"π
3
∈(class="stub"π
3
,class="stub"4π
3
)
α+class="stub"π
3
=class="stub"7π
6

α=class="stub"5π
6
sinα=sinclass="stub"5π
6
=class="stub"1
2

(Ⅲ)∵x∈[-class="stub"π
2
,0]
2x+class="stub"π
3
∈[-class="stub"2π
3
,class="stub"π
3
]

sin(2x+class="stub"π
3
)∈
[-1,
3
2
]
-sin(2x+class="stub"π
3
)∈[-
3
2
,1]

f(x)的最大值为
3
+1

更多内容推荐