已知f(x+1)=x2-4,等差数列{an}中,a1=f(x-1),a2=-32,a3=f(x),其中x>0.(Ⅰ)求x的值;(Ⅱ)求a2+a4+a6+a8+a10的值.-数学

题目简介

已知f(x+1)=x2-4,等差数列{an}中,a1=f(x-1),a2=-32,a3=f(x),其中x>0.(Ⅰ)求x的值;(Ⅱ)求a2+a4+a6+a8+a10的值.-数学

题目详情

已知f(x+1)=x2-4,等差数列{an}中,a1=f(x-1),a2=-
3
2
,a3=f(x),其中x>0.
(Ⅰ)求x的值;
(Ⅱ)求a2+a4+a6+a8+a10的值.
题型:解答题难度:中档来源:不详

答案

(I)令t=x+1,则x=t-1.
∵f(x+1)=x2-4
∴f(t)=(t-1)2-4=t2-2t-3
即f(x)=x2-2x-3.…(3分)
∴a1=f(x-1)=x2-4x…(4分)
∴a3=f(x)=x2-2x-3…(5分)
∵数列{an}是等差数列
2a2=a1+a3即2×(-class="stub"3
2
)=(x2-4x)+(x2-2x-3)

解得x=0或x=3…(7分)
又∵x>0∴x=3即x的值是3.…(8分)
(Ⅱ)当x=3时,a1=-3,a2=-class="stub"3
2
,∴an=class="stub"3
2
n-class="stub"9
2
,…(10分)
∴a4=class="stub"3
2
a6=class="stub"9
2
a8=class="stub"15
2
a10=class="stub"21
2

∴a2+a4+a6+a8+a10=class="stub"45
2
.…(13分)

更多内容推荐