已知数列{an}满足a1=1,an+1=12an+n,n为奇数an-2n,n为偶数,记bn=a2n,n∈N*.(1)求a2,a3;(2)求数列{bn}的通项公式;(3)求S2n+1.-数学

题目简介

已知数列{an}满足a1=1,an+1=12an+n,n为奇数an-2n,n为偶数,记bn=a2n,n∈N*.(1)求a2,a3;(2)求数列{bn}的通项公式;(3)求S2n+1.-数学

题目详情

已知数列{an}满足a1=1,an+1=
1
2
an+n,n为奇数
an-2n,n为偶数
,记bn=a2n,n∈N*
(1)求a2,a3
(2)求数列{bn}的通项公式;
(3)求S2n+1
题型:解答题难度:中档来源:不详

答案

(1)当n=2时,a2=class="stub"1
2
a1
+1=class="stub"1
2
+1=class="stub"3
2

当n=3时,a3=a2-2×2=class="stub"3
2
-4=-class="stub"5
2

(2)当n≥2时,bn=a2n=a(2n-1)+1=class="stub"1
2
a2n-1+(2n-1)
=class="stub"1
2
[a2n-2-2(2n-2)]+(2n-1)=class="stub"1
2
a2(n-1)+1=class="stub"1
2
bn-1+1
∴bn-2=class="stub"1
2
(bn-1-2),又b1-2=a2-2=-class="stub"1
2

∴bn-2=-class="stub"1
2
•(class="stub"1
2
)n-1=-(class="stub"1
2
)n,即bn=2-(class="stub"1
2
)n.
(3)∵a2n+1=a2n-4n=bn-4n
∴S2n+1=a1+a2+…+a2n+a2n+1
=(a2+a4+…+a2n)+(a1+a3+a5+…+a2n+1)
=(b1+b2+…+bn)+[a1+(b1-4×1)+(b2-4×2)+…+(bn-4×n)]
=a1+2(b1+b2+…+bn)-4×(1+2+…+n)
=1+2(2n-
class="stub"1
2
[1-(-class="stub"1
2
)
n
]
1-class="stub"1
2
)-4×
n(n+1)
2

=(class="stub"1
2
)n-1-2n2+2n-1.

更多内容推荐