若1-tanθ2+tanθ=1,则cos2θ1+sin2θ的值为()A.3B.-3C.-2D.-12-数学

题目简介

若1-tanθ2+tanθ=1,则cos2θ1+sin2θ的值为()A.3B.-3C.-2D.-12-数学

题目详情

1-tanθ
2+tanθ
=1,则
cos2θ
1+sin2θ
的值为(  )
A.3B.-3C.-2D.-
1
2
题型:单选题难度:偏易来源:许昌一模

答案

∵cos2θ=cos2θ-sin2θ,1+sin2θ=sin2θ+2sinθcosθ+cos2θ
class="stub"cos2θ
1+sin2θ
=
cos 2θ-sin 2θ
sin 2θ+2sinθcosθ+cos 2θ

分子、分母都除以cos2θ,得class="stub"cos2θ
1+sin2θ
=
1-tan2θ
tan2θ+2tanθ+1

class="stub"1-tanθ
2+tanθ
=1,解之得tanθ=-class="stub"1
2

∴代入class="stub"cos2θ
1+sin2θ
=
1-tan2θ
tan2θ+2tanθ+1
class="stub"cos2θ
1+sin2θ
=
1-(-class="stub"1
2
)
2
(-class="stub"1
2
)
2
+2×(-class="stub"1
2
)+1
=3
故选:A

更多内容推荐