如图,矩形ABCD中,AB=6,BC=3.点E在线段BA上从B点以每秒1个单位的速度出发向A点运动,F是射线CD上一动点,在点E、F运动的过程中始终保持EF=5,且CF>BE,点P是EF的中点,

题目简介

如图,矩形ABCD中,AB=6,BC=3.点E在线段BA上从B点以每秒1个单位的速度出发向A点运动,F是射线CD上一动点,在点E、F运动的过程中始终保持EF=5,且CF>BE,点P是EF的中点,

题目详情

如图,矩形ABCD中,AB=6,BC=3.点E在线段BA上从B点以每秒1个单位的速度出发向A点运动,F是射线CD上一动点,在点E、F运动的过程中始终保持EF=5,且CF>BE,点P是EF的中点,连接AP.设点E运动时间为ts.

小题1:在点E运动过程中,AP的长度是如何变化的?(      )
A.一直变短B.一直变长C.先变长后变短D.先变短后变长
小题2:在点E、F运动的过程中,AP的长度存在一个最小值,当AP的长度取得最小值时,点P的位置应该在                
小题3:以P为圆心作⊙P,当⊙P与矩形ABCD三边所在直线都相切时,求出此时t的值,并指出此时⊙P的半径长.
题型:解答题难度:中档来源:不详

答案


小题1:D
小题1:AD的中点
小题1:如图3,当⊙P在矩形ABCD内分别与AB、AD、CD相切于点Q、R、N时.
连接PQ、PR、PN,则PQ⊥AB、PR⊥AD、PN⊥CD

则四边形AQPR与四边形RPND为两个全等的正方形
∴PQ="AQ" ="AR=DR" =AD=
在Rt△PQE中,EP=,由勾股定理可得:EQ=2
∴BE=BA-EQ-AQ=6-2-=
∴ t=,此时⊙P的半径为
如图4,当⊙P在矩形ABCD外分别与射线BA、AD、射线CD相切于点Q、R、N时.

类比图3可得,EQ=2,AQ=
∴BE=" BA+" AQ-EQ =6+-2=
∴  t=,此时⊙P的半径为
本题是有关圆的综合题,涉及到勾股定理、切线定理。

更多内容推荐