已知函数f(x)对任意实数x均有f(-x)=-f(x),f(π-x)=f(x)成立,当x∈[0,π2]时,f(x)=cosx-1.则当x∈[32π,2π]时,函数f(x)的表达式为()A.cosx+1

题目简介

已知函数f(x)对任意实数x均有f(-x)=-f(x),f(π-x)=f(x)成立,当x∈[0,π2]时,f(x)=cosx-1.则当x∈[32π,2π]时,函数f(x)的表达式为()A.cosx+1

题目详情

已知函数f(x)对任意实数x均有f(-x)=-f(x),f(π-x)=f(x)成立,当x∈[0,
π
2
]
时,f(x)=cosx-1.则当x∈[
3
2
π,2π]
时,函数f(x)的表达式为(  )
A.cosx+1B.cosx-1C.-cosx-1D.-cosx+1
题型:单选题难度:中档来源:不详

答案

class="stub"3π
2
≤x≤ 2π
时,0≤2π-x≤class="stub"π
2

∵f(-x)=-f(x),f(π-x)=f(x)
∴f(2π-x)=f[π-(x-π)]=f(x-π)=-f(π-x)=-f(x)
而当x∈[0,class="stub"π
2
]
时,f(x)=cosx-1
则f(2π-x)=cos(2π-x)-1=cosx-1=-f(x)
∴f(x)=-cosx+1
故选D.

更多内容推荐