(本小题满分12分)已知数列,且是函数,()的一个极值点.数列中(且).(1)求数列的通项公式;(2)记,当时,数列的前项和为,求使的的最小值;(3)若,证明:()。-高三数学

题目简介

(本小题满分12分)已知数列,且是函数,()的一个极值点.数列中(且).(1)求数列的通项公式;(2)记,当时,数列的前项和为,求使的的最小值;(3)若,证明:()。-高三数学

题目详情

(本小题满分12分)
已知数列,且是函数,()的一个极值点.数列).
(1)求数列的通项公式;
(2)记,当时,数列的前和为,求使的最小值;
(3)若,证明:)。
题型:解答题难度:中档来源:不详

答案

(1)
(2)的最小值为1006.
(3)略
解:(1)
所以,整理得
时,是以为首项,为公比的等比数列,
所以
    方法一:由上式得
所以,所以
时上式仍然成立,故……………4分
方法二:由上式得:,所以是常数列,

又,当时上式仍然成立,故
(2)当时,

,得,             
时,,当时,
因此的最小值为1006.……………8分
(3) ,所以证明
即证明
因为
所以,从而原命题得证………12分

更多内容推荐