若命题“$x∈R,x2+ax+1<0”是真命题,则实数a的取值范围为。-高二数学

题目简介

若命题“$x∈R,x2+ax+1<0”是真命题,则实数a的取值范围为。-高二数学

题目详情

若命题“$x∈R,x2+ax+1<0”是真命题,则实数a的取值范围为  
题型:填空题难度:中档来源:不详

答案

a∈(-∞,-2)∪(2,+∞)

试题分析:∵命命题“存在实数x,使x2+ax+1<0”的否定是假命题,∴原命题为真命题,即“存在实数x,使x2+ax+1<0”为真命题,∴△=a2-4>0=∴a<-2或a>2,故答案为:a<-2或a>2.

更多内容推荐